File size: 7,164 Bytes
737f55b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import logging
from typing import Any, Dict, List

from fastapi import APIRouter, HTTPException
from pydantic import BaseModel

from app.internal.bdd_manager import (
    create_collection,
    get_ensemble_retriever,
    get_retriever,
    get_vector_store,
)
from app.internal.embedder import get_embedder
from app.internal.export_report import create_pdf_report
from app.internal.llm_chat import (
    generate_summary,
    get_chat_llm,
    get_conversational_rag_chain,
    get_documents_retrieve,
    get_format_output,
    get_history_retriever,
    get_llm_answer,
    get_rag_chain,
    get_session_history,
    get_system_prompt_chain,
    question_to_conversational_rag_chain,
)
from app.internal.template_prompt import contextualize_q_prompt, qa_prompt
from app.settings import settings

# Initialisation du logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

chat_router = APIRouter(
    prefix="/chatting",
    tags=["question_anwser"],
    responses={404: {"description": "Not found"}},
)


class QueryRequest(BaseModel):
    user_query: str
    session_id: str = settings.session_id


class ResponseOutput(BaseModel):
    answer: str
    context: List[str]
    formatted_output: str


class Conversation(BaseModel):
    messages: List[Any]


class ResponseOutputSum(BaseModel):
    summary: str


# Initialisation des ressources
user_collection_name = settings.user_collection_name
logger.info("Initializing collection: %s", user_collection_name)
create_collection(user_collection_name)

doc_collection_name = settings.doc_collection_name
logger.info("Initializing collection: %s", doc_collection_name)
create_collection(doc_collection_name)

embedder = get_embedder(provider=settings.provider)
logger.info("Embedder initialized.")

doc_vector_store = get_vector_store(embedder, doc_collection_name)
logger.info("Vector store initialized with collection: %s", doc_collection_name)

user_vector_store = get_vector_store(embedder, user_collection_name)
logger.info("Vector store initialized with collection: %s", user_collection_name)

logger.info("Initializing LLM and retrievers...")
llm = get_chat_llm()
user_retriever = get_retriever(user_vector_store)
doc_retriever = get_retriever(doc_vector_store)
retriever = get_ensemble_retriever(doc_retriever, user_retriever)

logger.info("Creating history-aware retriever...")
history_retriever = get_history_retriever(llm, retriever, contextualize_q_prompt)

logger.info("Creating system prompt chain...")
qa_chain = get_system_prompt_chain(llm, qa_prompt)

logger.info("Creating RAG chain...")
rag_chain = get_rag_chain(history_retriever, qa_chain)

logger.info("Initializing conversational RAG chain...")
conversational_chain = get_conversational_rag_chain(
    rag_chain,
    lambda sid: get_session_history(settings.session_id, settings.history_store),
)


@chat_router.post("/chat", response_model=ResponseOutput)
async def chat_with_rag_chain(request: QueryRequest):
    """
    Route pour interagir avec le RAG (Retrieval-Augmented Generation) Chain.
    """
    logger.info("Received chat request with session_id: %s", request.session_id)
    logger.info("User query: %s", request.user_query)

    try:
        logger.info("Processing user query...")
        response = question_to_conversational_rag_chain(
            request.user_query, conversational_chain, request.session_id
        )
        logger.info("LLM response received: %s", response)

        answer = get_llm_answer(response)
        documents = get_documents_retrieve(response)

        logger.info("Formatting output...")
        formatted_output = get_format_output(answer, documents)

        logger.info(
            "Successfully processed chat request for session_id: %s", request.session_id
        )
        return {
            "answer": answer,
            "context": documents,
            "formatted_output": formatted_output,
        }

    except ValueError as e:
        logger.error("Validation error: %s", str(e))
        raise HTTPException(status_code=400, detail=str(e))
    except Exception as e:
        logger.error("Internal server error: %s", str(e))
        raise HTTPException(status_code=500, detail=f"Internal server error: {e}")


@chat_router.get("/history/{session_id}")
async def get_chat_history(session_id: str):
    """
    Route pour récupérer l'historique des messages pour une session donnée.
    """
    logger.info("Fetching chat history for session_id: %s", session_id)

    try:
        history = get_session_history(session_id, settings.history_store)
        logger.info(
            "Successfully retrieved chat history for session_id: %s", session_id
        )
        return {"session_id": session_id, "history": history.messages}
    except ValueError as e:
        logger.error("Validation error: %s", str(e))
        raise HTTPException(status_code=400, detail=str(e))
    except Exception as e:
        logger.error("Internal server error while fetching history: %s", str(e))
        raise HTTPException(status_code=500, detail=f"Internal server error: {e}")


@chat_router.post("/chat", response_model=ResponseOutput)
async def chat_with_rag_chain(request: QueryRequest):
    """
    Route pour interagir avec le RAG (Retrieval-Augmented Generation) Chain.
    """
    logger.info("Received chat request with session_id: %s", request.session_id)
    logger.info("User query: %s", request.user_query)

    try:
        logger.info("Processing user query...")
        response = question_to_conversational_rag_chain(
            request.user_query, conversational_chain, request.session_id
        )

        answer = get_llm_answer(response)
        documents = get_documents_retrieve(response)

        logger.info("Formatting output...")
        formatted_output = get_format_output(answer, documents)

        logger.info(
            "Successfully processed chat request for session_id: %s", request.session_id
        )
        return {
            "answer": answer,
            "context": documents,
            "formatted_output": formatted_output,
        }

    except ValueError as e:
        logger.error("Validation error: %s", str(e))
        raise HTTPException(status_code=400, detail=str(e))
    except Exception as e:
        logger.error("Internal server error: %s", str(e))
        raise HTTPException(status_code=500, detail=f"Internal server error: {e}")


@chat_router.post("/summary", response_model=ResponseOutputSum)
async def summarize_conversation(conversation: Conversation):
    """
    Génère un résumé de la conversation et liste les documents PDF référencés.

    Args:
        conversation (Conversation): Objet contenant les messages de la conversation.

    Returns:
        dict: Résumé de la conversation et liste des documents PDF référencés.
    """
    outpur_path = r"..\Shared_data\export.pdf"
    # outpur_path = r"C:\Users\jeanb\Documents\kzs-team\Shared_data\export.pdf"
    logo_path = r"app\resources\logo_ademe.png"
    summary_text = generate_summary(llm, conversation.messages)

    create_pdf_report(outpur_path, logo_path, summary_text)

    return {"summary": summary_text}