import os from pydantic_settings import BaseSettings, SettingsConfigDict class Settings(BaseSettings): model_config = SettingsConfigDict(env_file=".env", env_file_encoding="utf-8") llm_model_name: str = "HuggingFaceH4/zephyr-7b-beta" context_window_size: int = 5 retrieval_top_k: int = 3 temperature: float = 0.2 max_length: int = 2048 hf_token: str = os.getenv("HF_TOKEN") if not hf_token: raise ValueError( "ERREUR : Le token Hugging Face (HF_TOKEN) n'est pas défini ! Ajoute-le dans les variables d'environnement Hugging Face Spaces." ) embedding_model_name: str = "sentence-transformers/sentence-t5-xxl" # qdrant_url: str = "http://qdrant:6333" qdrant_url: str = "http://localhost:6333" parser: str = "openparse" history_store: dict = {} session_id: str = "user012025" user_collection_name: str = "User_Ademe_collection" doc_collection_name: str = "Doc_Ademe_collection" provider: str = "hf_api" settings = Settings()