Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -11,14 +11,11 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
-
# load text-to-speech checkpoint
|
15 |
-
|
16 |
|
17 |
-
model =
|
18 |
-
|
19 |
-
|
20 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
24 |
def translate(audio):
|
@@ -26,23 +23,29 @@ def translate(audio):
|
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
33 |
|
|
|
|
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
45 |
-
[
|
46 |
|
47 |

|
48 |
"""
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import VitsModel, VitsTokenizer, pipeline
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
+
# load text-to-speech checkpoint
|
15 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
|
16 |
|
17 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
|
18 |
+
model.to(device)
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
def translate(audio):
|
|
|
23 |
return outputs["text"]
|
24 |
|
25 |
|
26 |
+
def synthesize(text):
|
27 |
+
input = tokenizer(text, return_tensors="pt")
|
28 |
+
with torch.no_grad():
|
29 |
+
output = model(input['input_ids'].to(device))
|
30 |
+
|
31 |
+
return output.audio[0].cpu()
|
32 |
+
|
33 |
|
34 |
+
target_dtype = np.int16 # output audio file format expected by Gradio
|
35 |
+
max_range = np.iinfo(target_dtype).max
|
36 |
|
37 |
def speech_to_speech_translation(audio):
|
38 |
translated_text = translate(audio)
|
39 |
+
synthesized_speech = synthesize(translated_text)
|
40 |
+
# normalize audio array by dynamic range of target dtype for Gradio
|
41 |
+
synthesized_speech = (synthesized_speech.numpy() * max_range).astype(target_dtype)
|
42 |
+
return 16000, synthesized_speech
|
43 |
|
44 |
|
45 |
title = "Cascaded STST"
|
46 |
description = """
|
47 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in German. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebook's
|
48 |
+
[MMS](https://huggingface.co/facebook/mms-tts) model for text-to-speech:
|
49 |
|
50 |

|
51 |
"""
|