Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import re
|
3 |
+
import PyPDF2
|
4 |
+
import utils
|
5 |
+
import streamlit as st
|
6 |
+
from transformers import BertTokenizerFast, EncoderDecoderModel
|
7 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
8 |
+
model_id = 'mrm8488/bert2bert_shared-spanish-finetuned-summarization'
|
9 |
+
tokenizer = BertTokenizerFast.from_pretrained(model_id)
|
10 |
+
modelo = EncoderDecoderModel.from_pretrained(model_id).to(device)
|
11 |
+
|
12 |
+
def generate_summary(text):
|
13 |
+
inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
|
14 |
+
input_ids = inputs.input_ids.to(device)
|
15 |
+
attention_mask = inputs.attention_mask.to(device) #attention_mask only says that the model that this words are not pedded
|
16 |
+
output = modelo.generate(input_ids, attention_mask=attention_mask)
|
17 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
18 |
+
|
19 |
+
def summarize_pdf(pdf_file):
|
20 |
+
if pdf_file is not None:
|
21 |
+
with st.spinner('Generando resumen, espera un poco...'):
|
22 |
+
reader = PyPDF2.PdfReader(pdf_file)
|
23 |
+
title = reader.metadata.title
|
24 |
+
author = reader.metadata.author
|
25 |
+
pages =reader.pages
|
26 |
+
text = [pages[i].extract_text() for i in range(len(pages))]
|
27 |
+
text = [utils.drop_non_relevant_text(utils.preprocess_text(x)) for x in text]
|
28 |
+
text = [' '.join(x) for x in text]
|
29 |
+
text=[x+'\n' if len(x) < 50 else generate_summary(x)+' \n' for x in text]
|
30 |
+
results = [reader.metadata.title+' \n', reader.metadata.author+' \n'] + text
|
31 |
+
st.session_state["summary"] = ' '.join(results)
|
32 |
+
|
33 |
+
## Graphic interfaz
|
34 |
+
def output(pdf_file):
|
35 |
+
if pdf_file is not None:
|
36 |
+
reader = PyPDF2.PdfReader(pdf_file)
|
37 |
+
title = reader.metadata.title
|
38 |
+
st.session_state["summary"] = title
|
39 |
+
|
40 |
+
if 'summary' not in st.session_state:
|
41 |
+
st.session_state['summary'] = ''
|
42 |
+
#output = summarize_pdf(pdf_file)
|
43 |
+
#reader = PyPDF2.PdfReader(pdf_file)
|
44 |
+
# title = reader.metadata.title
|
45 |
+
# output = title
|
46 |
+
# st.write(output)
|
47 |
+
st.caption('Demo para la generaci贸n de resumenes en espa帽ol')
|
48 |
+
with st.sidebar:
|
49 |
+
with st.container(border = True):
|
50 |
+
st.title('PDF-Summarizer para espa帽ol')
|
51 |
+
st.caption('Este demo est谩 basado en el modelo: \n mrm8488/bert2bert_shared-spanish-finetuned-summarization \n Creado por Manuel Romero/@mrm8488 con el soporte de Narrativa')
|
52 |
+
pdf_file = st.file_uploader('Carga tu archivo PDF', type="pdf")
|
53 |
+
corre_button = st.button('Genera resumen',
|
54 |
+
on_click=summarize_pdf,
|
55 |
+
args = (pdf_file, ),
|
56 |
+
help = 'Presiona para generar resumen')
|
57 |
+
#if pdf_file is not None:
|
58 |
+
|
59 |
+
container = st.container(height=300)
|
60 |
+
container.write('Resumen:')
|
61 |
+
container.write(st.session_state["summary"])
|
62 |
+
|