HumanOrAlien / app.py
JEPHONETORRE's picture
2
b33d076
raw
history blame
8.94 kB
import streamlit as st
from PIL import Image
import os
import json
import numpy as np
import pickle
import zipfile
from io import BytesIO
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# Directories
UPLOAD_DIR = "uploaded_images"
MODEL_PATH = os.path.join(UPLOAD_DIR, "model.pkl")
LABELS_PATH = os.path.join(UPLOAD_DIR, "labels.json")
os.makedirs(UPLOAD_DIR, exist_ok=True)
# Initialize model and labels
if os.path.exists(MODEL_PATH):
with open(MODEL_PATH, "rb") as f:
model = pickle.load(f)
else:
model = RandomForestClassifier()
if os.path.exists(LABELS_PATH):
with open(LABELS_PATH, "r") as f:
labels = json.load(f)
else:
labels = {}
# Helper function to save uploaded images
def save_uploaded_image(uploaded_file):
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
return file_path
# Feature extraction function
def extract_features(file_path):
try:
with Image.open(file_path) as img:
return np.array(img.resize((64, 64))).flatten()
except Exception as e:
print(f"Error processing image {file_path}: {e}")
return None
# Train the model
def train_model(training_data):
global model, labels
features, targets = [], []
for file_path, label in training_data.items():
feature = extract_features(file_path)
if feature is not None:
features.append(feature)
targets.append(label)
if features:
features = np.array(features)
targets = np.array(targets)
model.fit(features, targets)
with open(MODEL_PATH, "wb") as f:
pickle.dump(model, f)
with open(LABELS_PATH, "w") as f:
json.dump(labels, f)
else:
print("No valid features found for training.")
# Classify an image
def classify_image(file_path):
global model
features = extract_features(file_path)
if features is not None:
features = features.reshape(1, -1)
return model.predict(features)[0]
else:
return "Invalid Image"
# Create a sample dataset for download
def create_sample_dataset():
sample_dir = "sample_dataset"
os.makedirs(sample_dir, exist_ok=True)
# Create Human and Alien directories
human_dir = os.path.join(sample_dir, "Human")
alien_dir = os.path.join(sample_dir, "Alien")
os.makedirs(human_dir, exist_ok=True)
os.makedirs(alien_dir, exist_ok=True)
# Add placeholder images (replace with real images in a practical application)
for i in range(1, 4):
human_image_path = os.path.join(human_dir, f"human_{i}.jpg")
alien_image_path = os.path.join(alien_dir, f"alien_{i}.jpg")
Image.new('RGB', (64, 64), color=(255, 0, 0)).save(human_image_path)
Image.new('RGB', (64, 64), color=(0, 255, 0)).save(alien_image_path)
# Create a ZIP file for download
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, "w") as zip_file:
for folder_name, subfolders, filenames in os.walk(sample_dir):
for filename in filenames:
file_path = os.path.join(folder_name, filename)
arcname = os.path.relpath(file_path, sample_dir)
zip_file.write(file_path, arcname)
return zip_buffer.getvalue()
# Streamlit app
def main():
st.title("Human or Alien Identification")
st.markdown(
"""
Welcome to the **Human or Alien Identification App**! Here's what you can do:
- **Identify Image:** Upload an image and classify it as "Human" or "Alien." The classifications you save will be added to the training data.
- **Train Model:** Review and manage the images already classified as "Human" or "Alien." Upload additional images to improve the training dataset.
- **Download Sample Dataset:** Download a pre-structured dataset to use for training and classification.
"""
)
tab1, tab2, tab3 = st.tabs(["Identify Image", "Train Model", "Download Sample Dataset"])
with tab1:
st.header("Identify Image")
uploaded_files = st.file_uploader("Upload Images to Identify", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if uploaded_files:
results = {}
for uploaded_file in uploaded_files:
try:
st.image(uploaded_file, caption=f"Uploaded Image: {uploaded_file.name}", use_container_width=True)
file_path = save_uploaded_image(uploaded_file)
prediction = classify_image(file_path)
results[file_path] = prediction
except Exception as e:
st.error(f"Error processing file {uploaded_file.name}: {e}")
st.subheader("Classification Results")
for file_path, label in results.items():
st.markdown(
f"<p style='font-size:20px; color:blue; background-color:lightyellow; padding:10px; border-radius:5px;'>Image: {os.path.basename(file_path)} - Classified as: {label}</p>",
unsafe_allow_html=True,
)
with tab2:
st.header("Train Model")
st.subheader("Upload Images for Training")
training_files = st.file_uploader("Upload Training Images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if training_files:
training_data = {}
for training_file in training_files:
try:
st.image(training_file, caption=f"Uploaded Training Image: {training_file.name}", use_container_width=True)
file_path = save_uploaded_image(training_file)
label = st.radio(
f"Classify {training_file.name}", ["Human", "Alien"], index=0, key=training_file.name
)
training_data[file_path] = label
except Exception as e:
st.error(f"Error processing file {training_file.name}: {e}")
if st.button("Save Training Data"):
labels.update(training_data)
train_model(training_data)
st.success("Training data has been saved and the model updated.")
st.subheader("Bulk Train with Existing Dataset")
dataset_file = st.file_uploader("Upload a JSON file containing labeled data", type=["json"])
if dataset_file:
dataset = json.load(dataset_file)
training_data = {}
for label, image_paths in dataset.items():
for image_path in image_paths:
if os.path.exists(image_path):
training_data[image_path] = label
if st.button("Train Model with Dataset"):
labels.update(training_data)
train_model(training_data)
st.success("Model has been trained with the uploaded dataset.")
subtab1, subtab2 = st.tabs(["Humans", "Aliens"])
with subtab1:
st.subheader("Human Images")
human_images = [
img for img, lbl in labels.items() if lbl == "Human"
]
if human_images:
st.info("These images have already been trained.")
for image_path in human_images:
try:
st.image(image_path, caption=f"Image: {os.path.basename(image_path)}", use_container_width=True)
except Exception as e:
st.error(f"Error displaying image {os.path.basename(image_path)}: {e}")
else:
st.warning("No human images found for training.")
with subtab2:
st.subheader("Alien Images")
alien_images = [
img for img, lbl in labels.items() if lbl == "Alien"
]
if alien_images:
st.info("These images have already been trained.")
for image_path in alien_images:
try:
st.image(image_path, caption=f"Image: {os.path.basename(image_path)}", use_container_width=True)
except Exception as e:
st.error(f"Error displaying image {os.path.basename(image_path)}: {e}")
else:
st.warning("No alien images found for training.")
with tab3:
st.header("Download Sample Dataset")
if st.button("Download Sample Dataset"):
sample_dataset = create_sample_dataset()
st.download_button(
label="Click to Download",
data=sample_dataset,
file_name="sample_dataset.zip",
mime="application/zip"
)
if __name__ == "__main__":
main()