JEPHONETORRE commited on
Commit
609cbbd
·
1 Parent(s): 218d38e
Files changed (2) hide show
  1. app.py +93 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ from sklearn.cluster import KMeans
5
+ import matplotlib.pyplot as plt
6
+
7
+ # App Title
8
+ st.title("Unsupervised Learning: K-Means Clustering")
9
+
10
+ # Sidebar Section: Tab for downloading a sample dataset
11
+ st.sidebar.subheader("Sample Dataset")
12
+ st.sidebar.write("Download a sample dataset to test the app. This sample contains two numerical features for demonstration purposes.")
13
+ sample_data = {
14
+ "Feature1": [1.0, 1.5, 3.0, 5.0, 3.5, 4.5, 3.5],
15
+ "Feature2": [1.0, 2.0, 4.0, 7.0, 5.0, 5.0, 4.5],
16
+ }
17
+ sample_df = pd.DataFrame(sample_data)
18
+ sample_csv = sample_df.to_csv(index=False)
19
+ st.sidebar.download_button(
20
+ label="Download Sample CSV",
21
+ data=sample_csv,
22
+ file_name="sample_data.csv",
23
+ mime="text/csv"
24
+ )
25
+
26
+ # Main Section: Upload dataset
27
+ st.header("Step 1: Upload Your Dataset")
28
+ st.write("Upload a CSV file containing your data. Ensure it includes numerical features for clustering.")
29
+ uploaded_file = st.file_uploader("Upload your dataset (CSV format)", type="csv")
30
+ if uploaded_file:
31
+ data = pd.read_csv(uploaded_file)
32
+ st.write("Preview of the uploaded data:")
33
+ st.dataframe(data)
34
+
35
+ # Step 2: Select features for clustering
36
+ st.subheader("Step 2: Feature Selection")
37
+ st.write("Select the numerical features you want to use for clustering.")
38
+ selected_features = st.multiselect(
39
+ "Select features for clustering:", data.columns.tolist()
40
+ )
41
+
42
+ if selected_features:
43
+ X = data[selected_features]
44
+
45
+ # Step 3: Configure clustering parameters
46
+ st.subheader("Step 3: Clustering Configuration")
47
+ st.write("Choose the number of clusters you want to create using the slider below.")
48
+ n_clusters = st.slider("Select the number of clusters:", min_value=2, max_value=10, value=3)
49
+
50
+ # Apply K-Means Clustering
51
+ model = KMeans(n_clusters=n_clusters, random_state=42)
52
+ cluster_labels = model.fit_predict(X)
53
+
54
+ # Step 4: Add cluster labels to the dataset
55
+ data['Cluster'] = cluster_labels
56
+ st.write("Clustered Data:")
57
+ st.dataframe(data)
58
+
59
+ # Step 5: Visualize the clusters
60
+ st.subheader("Step 5: Cluster Visualization")
61
+ st.write("Visualize the clustering results. Select at least two features for plotting.")
62
+ if len(selected_features) >= 2:
63
+ fig, ax = plt.subplots()
64
+ scatter = ax.scatter(
65
+ X[selected_features[0]],
66
+ X[selected_features[1]],
67
+ c=cluster_labels,
68
+ cmap="viridis",
69
+ s=50
70
+ )
71
+ ax.set_xlabel(selected_features[0])
72
+ ax.set_ylabel(selected_features[1])
73
+ ax.set_title("K-Means Clustering")
74
+ legend = ax.legend(*scatter.legend_elements(), title="Clusters")
75
+ ax.add_artist(legend)
76
+ st.pyplot(fig)
77
+ else:
78
+ st.warning("Select at least 2 features for visualization.")
79
+
80
+ # Step 6: Download the clustered data
81
+ st.subheader("Step 6: Download Clustered Data")
82
+ st.write("Download the dataset with the cluster labels added.")
83
+ csv = data.to_csv(index=False)
84
+ st.download_button(
85
+ label="Download CSV",
86
+ data=csv,
87
+ file_name="clustered_data.csv",
88
+ mime="text/csv"
89
+ )
90
+ else:
91
+ st.warning("Please select features for clustering.")
92
+ else:
93
+ st.info("Awaiting file upload. Use the sample dataset in the sidebar if you don’t have a file.")
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ scikit-learn
4
+ matplotlib