Commit
·
609cbbd
1
Parent(s):
218d38e
- app.py +93 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.cluster import KMeans
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
# App Title
|
8 |
+
st.title("Unsupervised Learning: K-Means Clustering")
|
9 |
+
|
10 |
+
# Sidebar Section: Tab for downloading a sample dataset
|
11 |
+
st.sidebar.subheader("Sample Dataset")
|
12 |
+
st.sidebar.write("Download a sample dataset to test the app. This sample contains two numerical features for demonstration purposes.")
|
13 |
+
sample_data = {
|
14 |
+
"Feature1": [1.0, 1.5, 3.0, 5.0, 3.5, 4.5, 3.5],
|
15 |
+
"Feature2": [1.0, 2.0, 4.0, 7.0, 5.0, 5.0, 4.5],
|
16 |
+
}
|
17 |
+
sample_df = pd.DataFrame(sample_data)
|
18 |
+
sample_csv = sample_df.to_csv(index=False)
|
19 |
+
st.sidebar.download_button(
|
20 |
+
label="Download Sample CSV",
|
21 |
+
data=sample_csv,
|
22 |
+
file_name="sample_data.csv",
|
23 |
+
mime="text/csv"
|
24 |
+
)
|
25 |
+
|
26 |
+
# Main Section: Upload dataset
|
27 |
+
st.header("Step 1: Upload Your Dataset")
|
28 |
+
st.write("Upload a CSV file containing your data. Ensure it includes numerical features for clustering.")
|
29 |
+
uploaded_file = st.file_uploader("Upload your dataset (CSV format)", type="csv")
|
30 |
+
if uploaded_file:
|
31 |
+
data = pd.read_csv(uploaded_file)
|
32 |
+
st.write("Preview of the uploaded data:")
|
33 |
+
st.dataframe(data)
|
34 |
+
|
35 |
+
# Step 2: Select features for clustering
|
36 |
+
st.subheader("Step 2: Feature Selection")
|
37 |
+
st.write("Select the numerical features you want to use for clustering.")
|
38 |
+
selected_features = st.multiselect(
|
39 |
+
"Select features for clustering:", data.columns.tolist()
|
40 |
+
)
|
41 |
+
|
42 |
+
if selected_features:
|
43 |
+
X = data[selected_features]
|
44 |
+
|
45 |
+
# Step 3: Configure clustering parameters
|
46 |
+
st.subheader("Step 3: Clustering Configuration")
|
47 |
+
st.write("Choose the number of clusters you want to create using the slider below.")
|
48 |
+
n_clusters = st.slider("Select the number of clusters:", min_value=2, max_value=10, value=3)
|
49 |
+
|
50 |
+
# Apply K-Means Clustering
|
51 |
+
model = KMeans(n_clusters=n_clusters, random_state=42)
|
52 |
+
cluster_labels = model.fit_predict(X)
|
53 |
+
|
54 |
+
# Step 4: Add cluster labels to the dataset
|
55 |
+
data['Cluster'] = cluster_labels
|
56 |
+
st.write("Clustered Data:")
|
57 |
+
st.dataframe(data)
|
58 |
+
|
59 |
+
# Step 5: Visualize the clusters
|
60 |
+
st.subheader("Step 5: Cluster Visualization")
|
61 |
+
st.write("Visualize the clustering results. Select at least two features for plotting.")
|
62 |
+
if len(selected_features) >= 2:
|
63 |
+
fig, ax = plt.subplots()
|
64 |
+
scatter = ax.scatter(
|
65 |
+
X[selected_features[0]],
|
66 |
+
X[selected_features[1]],
|
67 |
+
c=cluster_labels,
|
68 |
+
cmap="viridis",
|
69 |
+
s=50
|
70 |
+
)
|
71 |
+
ax.set_xlabel(selected_features[0])
|
72 |
+
ax.set_ylabel(selected_features[1])
|
73 |
+
ax.set_title("K-Means Clustering")
|
74 |
+
legend = ax.legend(*scatter.legend_elements(), title="Clusters")
|
75 |
+
ax.add_artist(legend)
|
76 |
+
st.pyplot(fig)
|
77 |
+
else:
|
78 |
+
st.warning("Select at least 2 features for visualization.")
|
79 |
+
|
80 |
+
# Step 6: Download the clustered data
|
81 |
+
st.subheader("Step 6: Download Clustered Data")
|
82 |
+
st.write("Download the dataset with the cluster labels added.")
|
83 |
+
csv = data.to_csv(index=False)
|
84 |
+
st.download_button(
|
85 |
+
label="Download CSV",
|
86 |
+
data=csv,
|
87 |
+
file_name="clustered_data.csv",
|
88 |
+
mime="text/csv"
|
89 |
+
)
|
90 |
+
else:
|
91 |
+
st.warning("Please select features for clustering.")
|
92 |
+
else:
|
93 |
+
st.info("Awaiting file upload. Use the sample dataset in the sidebar if you don’t have a file.")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
scikit-learn
|
4 |
+
matplotlib
|