import streamlit as st import pandas as pd import numpy as np from sklearn.cluster import KMeans import matplotlib.pyplot as plt # App Title st.title("Unsupervised Learning: K-Means Clustering") # Sidebar Section: Tab for downloading a sample dataset st.sidebar.subheader("Sample Dataset") st.sidebar.write("Download a sample dataset to test the app. This sample contains two numerical features for demonstration purposes.") sample_data = { "Feature1": [1.0, 1.5, 3.0, 5.0, 3.5, 4.5, 3.5], "Feature2": [1.0, 2.0, 4.0, 7.0, 5.0, 5.0, 4.5], } sample_df = pd.DataFrame(sample_data) sample_csv = sample_df.to_csv(index=False) st.sidebar.download_button( label="Download Sample CSV", data=sample_csv, file_name="sample_data.csv", mime="text/csv" ) # Main Section: Upload dataset st.header("Step 1: Upload Your Dataset") st.write("Upload a CSV file containing your data. Ensure it includes numerical features for clustering.") uploaded_file = st.file_uploader("Upload your dataset (CSV format)", type="csv") if uploaded_file: data = pd.read_csv(uploaded_file) st.write("Preview of the uploaded data:") st.dataframe(data) # Step 2: Select features for clustering st.subheader("Step 2: Feature Selection") st.write("Select the numerical features you want to use for clustering.") selected_features = st.multiselect( "Select features for clustering:", data.columns.tolist() ) if selected_features: X = data[selected_features] # Step 3: Configure clustering parameters st.subheader("Step 3: Clustering Configuration") st.write("Choose the number of clusters you want to create using the slider below.") n_clusters = st.slider("Select the number of clusters:", min_value=2, max_value=10, value=3) # Apply K-Means Clustering model = KMeans(n_clusters=n_clusters, random_state=42) cluster_labels = model.fit_predict(X) # Step 4: Add cluster labels to the dataset data['Cluster'] = cluster_labels st.write("Clustered Data:") st.dataframe(data) # Step 5: Visualize the clusters st.subheader("Step 5: Cluster Visualization") st.write("Visualize the clustering results. Select at least two features for plotting.") if len(selected_features) >= 2: fig, ax = plt.subplots() scatter = ax.scatter( X[selected_features[0]], X[selected_features[1]], c=cluster_labels, cmap="viridis", s=50 ) ax.set_xlabel(selected_features[0]) ax.set_ylabel(selected_features[1]) ax.set_title("K-Means Clustering") legend = ax.legend(*scatter.legend_elements(), title="Clusters") ax.add_artist(legend) st.pyplot(fig) else: st.warning("Select at least 2 features for visualization.") # Step 6: Download the clustered data st.subheader("Step 6: Download Clustered Data") st.write("Download the dataset with the cluster labels added.") csv = data.to_csv(index=False) st.download_button( label="Download CSV", data=csv, file_name="clustered_data.csv", mime="text/csv" ) else: st.warning("Please select features for clustering.") else: st.info("Awaiting file upload. Use the sample dataset in the sidebar if you don’t have a file.")