File size: 5,767 Bytes
6debb22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4972b5
 
 
 
 
 
 
 
 
 
 
 
 
 
6debb22
 
 
 
 
 
 
 
 
 
 
f4972b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6debb22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 512

DESCRIPTION = """\
# OpenELM-3B-Instruct

This Space demonstrates [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) by Apple. Please, check the original model card for details.
You can see the other models of the OpenELM family [here](https://huggingface.co/apple/OpenELM)
The following Colab notebooks are available:
* [OpenELM-3B-Instruct (GPU)](https://gist.github.com/Norod/4f11bb36bea5c548d18f10f9d7ec09b0)
* [OpenELM-270M (CPU)](https://gist.github.com/Norod/5a311a8e0a774b5c35919913545b7af4)

You might also be interested in checking out Apple's [CoreNet Github page](https://github.com/apple/corenet?tab=readme-ov-file).

If you duplicate this space, make sure you have access to [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
because this model uses it as a tokenizer.

# Note: Use this model for only for completing sentences and instruction following.
## While the user interface is a chatbot for convenience, this is an instruction tuned model not fine-tuned for chatbot tasks. As such, the model is not provided a chat history and will complete your text based on the last given prompt only.
"""

LICENSE = """
<p/>

---
As a derivative work of [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) by Apple,
this demo is governed by the original [license](https://huggingface.co/apple/OpenELM-3B-Instruct/blob/main/LICENSE).
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

# Global variables
model = None
tokenizer = None

def initialize_model_and_tokenizer():
    global model, tokenizer
    if torch.cuda.is_available():
        model_id = "apple/OpenELM-3B-Instruct"    
        model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, low_cpu_mem_usage=True)
        tokenizer_id = "meta-llama/Llama-2-7b-hf"
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            tokenizer.pad_token_id = tokenizer.eos_token_id
    else:
        print("CUDA is not available. Model and tokenizer will not be initialized.")

initialize_model_and_tokenizer()

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.4,
) -> Iterator[str]:
    global model, tokenizer

    if tokenizer is None or model is None:
        yield "Error: Model or tokenizer not initialized. Make sure you have GPU support and the necessary model access."
        return

    try:
        input_ids = tokenizer([message], return_tensors="pt").input_ids
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)

        streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
        generate_kwargs = dict(
            input_ids=input_ids,
            streamer=streamer,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            top_p=top_p,
            top_k=top_k,
            temperature=temperature,
            num_beams=1,
            pad_token_id=tokenizer.eos_token_id,
            repetition_penalty=repetition_penalty,
            no_repeat_ngram_size=5,
            early_stopping=True,
        )
        t = Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()

        outputs = []
        for text in streamer:
            outputs.append(text)
            yield "".join(outputs)
    except Exception as e:
        yield f"An error occurred: {str(e)}"

chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.4,
        ),
    ],
    stop_btn=None,
    examples=[
        ["A recipe for a chocolate cake:"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["Question: What is the capital of France?\nAnswer:"],
        ["Question: I am very tired, what should I do?\nAnswer:"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()