Delete app_V1.py.txt
Browse files- app_V1.py.txt +0 -74
app_V1.py.txt
DELETED
@@ -1,74 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import joblib
|
5 |
-
from sklearn.decomposition import PCA
|
6 |
-
from sklearn.preprocessing import StandardScaler
|
7 |
-
from sklearn.cluster import KMeans, DBSCAN
|
8 |
-
from scipy.cluster.hierarchy import fcluster, linkage
|
9 |
-
|
10 |
-
# 讀取保存的模型
|
11 |
-
scaler = joblib.load('scaler.sav')
|
12 |
-
pca = joblib.load('pca_model.sav')
|
13 |
-
kmeans = joblib.load('kmeans_model.sav')
|
14 |
-
linked = joblib.load('hierarchical_model.sav')
|
15 |
-
dbscan = joblib.load('dbscan_model.sav')
|
16 |
-
|
17 |
-
# 標題和簡介
|
18 |
-
st.title("聚類分析 - KMeans, Hierarchical Clustering 和 DBSCAN")
|
19 |
-
st.write("上傳 CSV 文件並查看聚類結果")
|
20 |
-
|
21 |
-
# 上傳文件
|
22 |
-
uploaded_file = st.file_uploader("上傳 CSV 文件", type=["csv"])
|
23 |
-
|
24 |
-
if uploaded_file is not None:
|
25 |
-
# 讀取上傳的 CSV 文件
|
26 |
-
data = pd.read_csv(uploaded_file)
|
27 |
-
|
28 |
-
# 移除 'Time' 欄位
|
29 |
-
numerical_data = data.drop(columns=['Time'])
|
30 |
-
|
31 |
-
# 標準化數據
|
32 |
-
scaled_data = scaler.transform(numerical_data)
|
33 |
-
|
34 |
-
# 使用 PCA 進行降維
|
35 |
-
pca_data = pca.transform(scaled_data)
|
36 |
-
|
37 |
-
# 創建包含主成分的 DataFrame
|
38 |
-
pca_df = pd.DataFrame(pca_data, columns=['PC1', 'PC2'])
|
39 |
-
|
40 |
-
# 使用保存的 K-means 模型進行聚類
|
41 |
-
kmeans_labels = kmeans.predict(pca_df)
|
42 |
-
|
43 |
-
# 使用保存的階層式聚類結果
|
44 |
-
hclust_labels = fcluster(linked, 3, criterion='maxclust')
|
45 |
-
|
46 |
-
# 使用保存的 DBSCAN 模型進行聚類
|
47 |
-
dbscan_labels = dbscan.fit_predict(pca_df)
|
48 |
-
|
49 |
-
# ================== K-means 聚類圖表 ==================
|
50 |
-
st.subheader("K-means 聚類結果")
|
51 |
-
fig_kmeans, ax_kmeans = plt.subplots()
|
52 |
-
ax_kmeans.scatter(pca_df['PC1'], pca_df['PC2'], c=kmeans_labels, cmap='viridis')
|
53 |
-
ax_kmeans.set_title('K-means Clustering')
|
54 |
-
ax_kmeans.set_xlabel('PC1')
|
55 |
-
ax_kmeans.set_ylabel('PC2')
|
56 |
-
st.pyplot(fig_kmeans)
|
57 |
-
|
58 |
-
# ================== 階層式聚類圖表 ==================
|
59 |
-
st.subheader("階層式聚類結果")
|
60 |
-
fig_hclust, ax_hclust = plt.subplots()
|
61 |
-
ax_hclust.scatter(pca_df['PC1'], pca_df['PC2'], c=hclust_labels, cmap='viridis')
|
62 |
-
ax_hclust.set_title('Hierarchical Clustering')
|
63 |
-
ax_hclust.set_xlabel('PC1')
|
64 |
-
ax_hclust.set_ylabel('PC2')
|
65 |
-
st.pyplot(fig_hclust)
|
66 |
-
|
67 |
-
# ================== DBSCAN 聚類圖表 ==================
|
68 |
-
st.subheader("DBSCAN 聚類結果")
|
69 |
-
fig_dbscan, ax_dbscan = plt.subplots()
|
70 |
-
ax_dbscan.scatter(pca_df['PC1'], pca_df['PC2'], c=dbscan_labels, cmap='viridis')
|
71 |
-
ax_dbscan.set_title('DBSCAN Clustering')
|
72 |
-
ax_dbscan.set_xlabel('PC1')
|
73 |
-
ax_dbscan.set_ylabel('PC2')
|
74 |
-
st.pyplot(fig_dbscan)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|