Create app.py
Browse files
app.py
CHANGED
@@ -46,26 +46,29 @@ if uploaded_file is not None:
|
|
46 |
# 使用保存的 DBSCAN 模型進行聚類
|
47 |
dbscan_labels = dbscan.fit_predict(pca_df)
|
48 |
|
49 |
-
#
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
ax[2].set_title('DBSCAN Clustering')
|
67 |
-
ax[2].set_xlabel('PC1')
|
68 |
-
ax[2].set_ylabel('PC2')
|
69 |
-
|
70 |
-
# 顯示圖表
|
71 |
-
st.pyplot(fig)
|
|
|
46 |
# 使用保存的 DBSCAN 模型進行聚類
|
47 |
dbscan_labels = dbscan.fit_predict(pca_df)
|
48 |
|
49 |
+
# ================== K-means 聚類圖表 ==================
|
50 |
+
st.subheader("K-means 聚類結果")
|
51 |
+
fig_kmeans, ax_kmeans = plt.subplots()
|
52 |
+
ax_kmeans.scatter(pca_df['PC1'], pca_df['PC2'], c=kmeans_labels, cmap='viridis')
|
53 |
+
ax_kmeans.set_title('K-means Clustering')
|
54 |
+
ax_kmeans.set_xlabel('PC1')
|
55 |
+
ax_kmeans.set_ylabel('PC2')
|
56 |
+
st.pyplot(fig_kmeans)
|
57 |
|
58 |
+
# ================== 階層式聚類圖表 ==================
|
59 |
+
st.subheader("階層式聚類結果")
|
60 |
+
fig_hclust, ax_hclust = plt.subplots()
|
61 |
+
ax_hclust.scatter(pca_df['PC1'], pca_df['PC2'], c=hclust_labels, cmap='viridis')
|
62 |
+
ax_hclust.set_title('Hierarchical Clustering')
|
63 |
+
ax_hclust.set_xlabel('PC1')
|
64 |
+
ax_hclust.set_ylabel('PC2')
|
65 |
+
st.pyplot(fig_hclust)
|
66 |
|
67 |
+
# ================== DBSCAN 聚類圖表 ==================
|
68 |
+
st.subheader("DBSCAN 聚類結果")
|
69 |
+
fig_dbscan, ax_dbscan = plt.subplots()
|
70 |
+
ax_dbscan.scatter(pca_df['PC1'], pca_df['PC2'], c=dbscan_labels, cmap='viridis')
|
71 |
+
ax_dbscan.set_title('DBSCAN Clustering')
|
72 |
+
ax_dbscan.set_xlabel('PC1')
|
73 |
+
ax_dbscan.set_ylabel('PC2')
|
74 |
+
st.pyplot(fig_dbscan)
|
|
|
|
|
|
|
|
|
|
|
|