Spaces:
Runtime error
Runtime error
Joshua Lansford
commited on
Commit
·
9997114
1
Parent(s):
370675b
It is now in an object, trains and executes.
Browse files- .vscode/launch.json +51 -1
- transmorgrify.py +238 -36
.vscode/launch.json
CHANGED
@@ -25,8 +25,23 @@
|
|
25 |
"--a_header", "English",
|
26 |
"--b_header", "Phonetic",
|
27 |
"--device", "0:1",
|
28 |
-
"--model", "
|
29 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
},{
|
31 |
"name": "Train short phonetic 4000 gpu",
|
32 |
"type": "python",
|
@@ -42,6 +57,41 @@
|
|
42 |
"--device", "0:1",
|
43 |
"--model", "phonetics_small.tm"
|
44 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
}
|
46 |
]
|
47 |
}
|
|
|
25 |
"--a_header", "English",
|
26 |
"--b_header", "Phonetic",
|
27 |
"--device", "0:1",
|
28 |
+
"--model", "phonetics_forward.tm"
|
29 |
]
|
30 |
+
},{
|
31 |
+
"name": "Train reverse phonetic 4000 gpu",
|
32 |
+
"type": "python",
|
33 |
+
"request": "launch",
|
34 |
+
"program": "transmorgrify.py",
|
35 |
+
"console": "integratedTerminal",
|
36 |
+
"justMyCode": true,
|
37 |
+
"args": [
|
38 |
+
"--train",
|
39 |
+
"--in_csv", "/home/lansford/Sync/projects/tf_over/sentance_transmogrifier/examples/phonetic/phonetic.csv",
|
40 |
+
"--b_header", "English",
|
41 |
+
"--a_header", "Phonetic",
|
42 |
+
"--device", "0:1",
|
43 |
+
"--model", "phonetics_backwards.tm"
|
44 |
+
]
|
45 |
},{
|
46 |
"name": "Train short phonetic 4000 gpu",
|
47 |
"type": "python",
|
|
|
57 |
"--device", "0:1",
|
58 |
"--model", "phonetics_small.tm"
|
59 |
]
|
60 |
+
},{
|
61 |
+
"name": "Execute phonetic gpu",
|
62 |
+
"type": "python",
|
63 |
+
"request": "launch",
|
64 |
+
"program": "transmorgrify.py",
|
65 |
+
"console": "integratedTerminal",
|
66 |
+
"justMyCode": true,
|
67 |
+
"args": [
|
68 |
+
"--execute",
|
69 |
+
"--in_csv", "/home/lansford/Sync/projects/tf_over/sentance_transmogrifier/examples/phonetic/phonetic.csv",
|
70 |
+
"--out_csv", "./phonetic_out.csv",
|
71 |
+
"--a_header", "English",
|
72 |
+
"--b_header", "Phonetic",
|
73 |
+
"--device", "0:1",
|
74 |
+
"--model", "phonetics_forward.tm",
|
75 |
+
"--verbose",
|
76 |
+
]
|
77 |
+
},{
|
78 |
+
"name": "short Execute phonetic gpu",
|
79 |
+
"type": "python",
|
80 |
+
"request": "launch",
|
81 |
+
"program": "transmorgrify.py",
|
82 |
+
"console": "integratedTerminal",
|
83 |
+
"justMyCode": true,
|
84 |
+
"args": [
|
85 |
+
"--execute",
|
86 |
+
"--in_csv", "/home/lansford/Sync/projects/tf_over/sentance_transmogrifier/examples/phonetic/phonetic_short.csv",
|
87 |
+
"--out_csv", "./phonetic_out.csv",
|
88 |
+
"--a_header", "English",
|
89 |
+
"--b_header", "Phonetic",
|
90 |
+
"--device", "0:1",
|
91 |
+
"--model", "phonetics_forward.tm",
|
92 |
+
"--verbose",
|
93 |
+
"--include_stats",
|
94 |
+
]
|
95 |
}
|
96 |
]
|
97 |
}
|
transmorgrify.py
CHANGED
@@ -12,7 +12,73 @@ DELETE_FROM = 1
|
|
12 |
INSERT_TO = 2
|
13 |
START = 3
|
14 |
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def _list_trace( trace ):
|
18 |
if trace.parrent is None:
|
@@ -270,19 +336,7 @@ def _train_catboost( X, y, iterations, device, verbose, model_piece, learning_ra
|
|
270 |
|
271 |
return model
|
272 |
|
273 |
-
def _train_reconstruct_models( from_sentances, to_sentances, iterations, device, num_pre_context_chars, num_post_context_chars, verbose ):
|
274 |
-
|
275 |
-
X,Y = _parse_for_training( from_sentances, to_sentances, num_pre_context_chars=num_pre_context_chars, num_post_context_chars=num_post_context_chars )
|
276 |
-
|
277 |
-
#train and save the action_model
|
278 |
-
action_model = _train_catboost( X, Y['action'], iterations, verbose=verbose, device=device, model_piece='action' )
|
279 |
|
280 |
-
#and the char model
|
281 |
-
#slice through where only the action is insert.
|
282 |
-
insert_indexes = Y['action'] == INSERT_TO
|
283 |
-
char_model = _train_catboost( X[insert_indexes], Y['char'][insert_indexes], iterations, verbose=verbose, device=device, model_piece='char' )
|
284 |
-
|
285 |
-
return action_model, char_model
|
286 |
|
287 |
def _mktemp():
|
288 |
#I know mktemp exists in the library but it has been depricated suggesting using
|
@@ -293,7 +347,103 @@ def _mktemp():
|
|
293 |
number += 1
|
294 |
return f".temp_{number}~"
|
295 |
|
296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
if verbose: print( "loading csv" )
|
298 |
full_data = pd.read_csv( in_csv )
|
299 |
|
@@ -302,33 +452,66 @@ def train( in_csv, a_header, b_header, model, iterations, device, leading_contex
|
|
302 |
|
303 |
if verbose: print( "parcing data for training" )
|
304 |
|
305 |
-
|
|
|
|
|
|
|
306 |
to_sentances=train_data[b_header],
|
307 |
iterations = iterations,
|
308 |
device = device,
|
309 |
-
|
310 |
-
|
311 |
verbose=verbose,
|
312 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
-
temp_action_filename = _mktemp()
|
315 |
-
action_model.save_model( temp_action_filename )
|
316 |
-
temp_char_filename = _mktemp()
|
317 |
-
char_model.save_model( temp_char_filename )
|
318 |
-
|
319 |
-
with zipfile.ZipFile( model, mode="w", compression=zipfile.ZIP_DEFLATED, compresslevel=9 ) as myzip:
|
320 |
-
with myzip.open( 'params.json', mode='w' ) as out:
|
321 |
-
out.write( json.dumps({
|
322 |
-
'version': 1,
|
323 |
-
'leading_context': leading_context,
|
324 |
-
'trailing_context': trailing_context,
|
325 |
-
'iterations': iterations,
|
326 |
-
}).encode())
|
327 |
-
myzip.write( temp_action_filename, "action.cb" )
|
328 |
-
myzip.write( temp_char_filename, "char.cb" )
|
329 |
-
|
330 |
-
os.unlink( temp_action_filename )
|
331 |
-
os.unlink( temp_char_filename )
|
332 |
|
333 |
def main():
|
334 |
parser = argparse.ArgumentParser(
|
@@ -347,6 +530,7 @@ def main():
|
|
347 |
parser.add_argument('-p', '--train_percentage', help="The percentage of data to train on, leaving the rest for testing.")
|
348 |
parser.add_argument('-e', '--execute', action='store_true', help='Use an existing trained model.')
|
349 |
parser.add_argument('-v', '--verbose', action='store_true', help='Talks alot?' )
|
|
|
350 |
|
351 |
|
352 |
args = parser.parse_args()
|
@@ -355,7 +539,6 @@ def main():
|
|
355 |
|
356 |
|
357 |
if args.train:
|
358 |
-
|
359 |
train_percentage = args.train_percentage
|
360 |
if train_percentage is None:
|
361 |
if args.execute:
|
@@ -375,7 +558,26 @@ def main():
|
|
375 |
verbose=args.verbose,
|
376 |
)
|
377 |
|
378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
|
380 |
|
381 |
if __name__ == '__main__':
|
|
|
12 |
INSERT_TO = 2
|
13 |
START = 3
|
14 |
|
15 |
+
FILE_VERSION = 1
|
16 |
|
17 |
+
class Transmorgrifyer:
|
18 |
+
def train( self, from_sentances, to_sentances, iterations, device, trailing_context, leading_context, verbose ):
|
19 |
+
|
20 |
+
X,Y = _parse_for_training( from_sentances, to_sentances, num_pre_context_chars=leading_context, num_post_context_chars=trailing_context )
|
21 |
+
|
22 |
+
#train and save the action_model
|
23 |
+
self.action_model = _train_catboost( X, Y['action'], iterations, verbose=verbose, device=device, model_piece='action' )
|
24 |
+
|
25 |
+
#and the char model
|
26 |
+
#slice through where only the action is insert.
|
27 |
+
insert_indexes = Y['action'] == INSERT_TO
|
28 |
+
self.char_model = _train_catboost( X[insert_indexes], Y['char'][insert_indexes], iterations, verbose=verbose, device=device, model_piece='char' )
|
29 |
+
|
30 |
+
self.trailing_context = trailing_context
|
31 |
+
self.leading_context = leading_context
|
32 |
+
self.iterations = iterations
|
33 |
+
|
34 |
+
def save( self, model ):
|
35 |
+
with zipfile.ZipFile( model, mode="w", compression=zipfile.ZIP_DEFLATED, compresslevel=9 ) as myzip:
|
36 |
+
with myzip.open( 'params.json', mode='w' ) as out:
|
37 |
+
out.write( json.dumps({
|
38 |
+
'version': FILE_VERSION,
|
39 |
+
'leading_context': self.leading_context,
|
40 |
+
'trailing_context': self.trailing_context,
|
41 |
+
'iterations': self.iterations,
|
42 |
+
}).encode())
|
43 |
+
temp_filename = _mktemp()
|
44 |
+
self.action_model.save_model( temp_filename )
|
45 |
+
myzip.write( temp_filename, "action.cb" )
|
46 |
+
self.char_model.save_model( temp_filename )
|
47 |
+
myzip.write( temp_filename, "char.cb" )
|
48 |
+
os.unlink( temp_filename )
|
49 |
+
|
50 |
+
def load( self, model ):
|
51 |
+
with zipfile.ZipFile( model, mode='r' ) as zip:
|
52 |
+
with zip.open( 'params.json' ) as fin:
|
53 |
+
params = json.loads( fin.read().decode() )
|
54 |
+
if params['version'] > FILE_VERSION: raise Exception( f"Version {params['version']} greater than {FILE_VERSION}" )
|
55 |
+
self.leading_context = params['leading_context']
|
56 |
+
self.trailing_context = params['trailing_context']
|
57 |
+
self.iterations = params['iterations']
|
58 |
+
temp_filename = _mktemp()
|
59 |
+
with zip.open( 'action.cb' ) as fin:
|
60 |
+
with open( temp_filename, "wb" ) as fout:
|
61 |
+
fout.write( fin.read() )
|
62 |
+
self.action_model = CatBoostClassifier().load_model( temp_filename )
|
63 |
+
with zip.open( 'char.cb' ) as fin:
|
64 |
+
with open( temp_filename, "wb" ) as fout:
|
65 |
+
fout.write( fin.read() )
|
66 |
+
self.char_model = CatBoostClassifier().load_model( temp_filename )
|
67 |
+
|
68 |
+
os.unlink( temp_filename)
|
69 |
+
|
70 |
+
|
71 |
+
def execute( self, from_sentances, verbose=False ):
|
72 |
+
for i,from_sentance in enumerate(from_sentances):
|
73 |
+
|
74 |
+
yield _do_reconstruct(
|
75 |
+
action_model=self.action_model,
|
76 |
+
char_model=self.char_model,
|
77 |
+
text=from_sentance,
|
78 |
+
num_pre_context_chars=self.leading_context,
|
79 |
+
num_post_context_chars=self.trailing_context )
|
80 |
+
if verbose and i % 10 == 0:
|
81 |
+
print( f"{i} of {len(from_sentances)}" )
|
82 |
|
83 |
def _list_trace( trace ):
|
84 |
if trace.parrent is None:
|
|
|
336 |
|
337 |
return model
|
338 |
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
def _mktemp():
|
342 |
#I know mktemp exists in the library but it has been depricated suggesting using
|
|
|
347 |
number += 1
|
348 |
return f".temp_{number}~"
|
349 |
|
350 |
+
|
351 |
+
def _do_reconstruct( action_model, char_model, text, num_pre_context_chars, num_post_context_chars ):
|
352 |
+
# result = ""
|
353 |
+
# for i in range(len(text)):
|
354 |
+
# pre_context = ( (" " * num_pre_context_chars) + result[max(0,len(result)-num_pre_context_chars):])[-num_pre_context_chars:]
|
355 |
+
# post_context = (text[i:min(len(text),i+num_post_context_chars)] + (" " * num_post_context_chars))[:num_post_context_chars]
|
356 |
+
# full_context = pre_context + post_context
|
357 |
+
# context_as_dictionary = { 'c'+str(c):[full_context[c]] for c in range(len(full_context)) }
|
358 |
+
# context_as_pd = pd.DataFrame( context_as_dictionary )
|
359 |
+
|
360 |
+
# model_result = model.predict( context_as_pd )[0]
|
361 |
+
|
362 |
+
# if not quite and len( result ) % 500 == 0: print( "%" + str(i*100/len(text))[:4] + " " + result[-100:])
|
363 |
+
|
364 |
+
# if model_result: result += " "
|
365 |
+
# result += text[i]
|
366 |
+
|
367 |
+
# pass
|
368 |
+
# return result
|
369 |
+
|
370 |
+
#test for nan.
|
371 |
+
if text != text: text = ''
|
372 |
+
|
373 |
+
working_from = text
|
374 |
+
working_to = ""
|
375 |
+
used_from = ""
|
376 |
+
continuous_added = 0
|
377 |
+
continuous_dropped = 0
|
378 |
+
while working_from and len(working_to) < 3*len(text) and (len(working_to) < 5 or working_to[-5:] != (working_to[-1] * 5)):
|
379 |
+
from_context = (working_from + (" " * num_post_context_chars))[:num_post_context_chars]
|
380 |
+
to_context = ((" " * num_pre_context_chars) + working_to )[-num_pre_context_chars:]
|
381 |
+
used_context = ((" " * num_pre_context_chars) + used_from )[-num_pre_context_chars:]
|
382 |
+
|
383 |
+
#construct the context.
|
384 |
+
context_as_dictionary = {}
|
385 |
+
#from_context
|
386 |
+
for i in range( num_post_context_chars ):
|
387 |
+
context_as_dictionary[ f"f{i}" ] = [from_context[i]]
|
388 |
+
#to_context
|
389 |
+
for i in range( num_pre_context_chars ):
|
390 |
+
context_as_dictionary[ f"t{i}" ] = [to_context[i]]
|
391 |
+
#used_context
|
392 |
+
for i in range( num_pre_context_chars ):
|
393 |
+
context_as_dictionary[ f"u{i}" ] = [used_context[i]]
|
394 |
+
#these two things.
|
395 |
+
context_as_dictionary["continuous_added"] = [continuous_added]
|
396 |
+
context_as_dictionary["continuous_dropped"] = [continuous_dropped]
|
397 |
+
|
398 |
+
#make it a pandas.
|
399 |
+
context_as_pd = pd.DataFrame( context_as_dictionary )
|
400 |
+
|
401 |
+
#run the model
|
402 |
+
action_model_result = action_model.predict( context_as_pd )[0][0]
|
403 |
+
|
404 |
+
if action_model_result == START:
|
405 |
+
pass
|
406 |
+
elif action_model_result == INSERT_TO:
|
407 |
+
#for an insert ask the char model what to insert
|
408 |
+
char_model_result = char_model.predict( context_as_pd )[0][0]
|
409 |
+
|
410 |
+
working_to += char_model_result
|
411 |
+
continuous_added += 1
|
412 |
+
continuous_dropped = 0
|
413 |
+
elif action_model_result == DELETE_FROM:
|
414 |
+
used_from += working_from[0]
|
415 |
+
working_from = working_from[1:]
|
416 |
+
continuous_added = 0
|
417 |
+
continuous_dropped += 1
|
418 |
+
elif action_model_result == MATCH:
|
419 |
+
used_from += working_from[0]
|
420 |
+
working_to += working_from[0]
|
421 |
+
working_from = working_from[1:]
|
422 |
+
continuous_added = 0
|
423 |
+
continuous_dropped = 0
|
424 |
+
|
425 |
+
return working_to
|
426 |
+
|
427 |
+
|
428 |
+
#edit distance from https://stackoverflow.com/a/32558749/1419054
|
429 |
+
def _levenshteinDistance(s1, s2):
|
430 |
+
if s1 != s1: s1 = ''
|
431 |
+
if s2 != s2: s2 = ''
|
432 |
+
if len(s1) > len(s2):
|
433 |
+
s1, s2 = s2, s1
|
434 |
+
|
435 |
+
distances = range(len(s1) + 1)
|
436 |
+
for i2, c2 in enumerate(s2):
|
437 |
+
distances_ = [i2+1]
|
438 |
+
for i1, c1 in enumerate(s1):
|
439 |
+
if c1 == c2:
|
440 |
+
distances_.append(distances[i1])
|
441 |
+
else:
|
442 |
+
distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1])))
|
443 |
+
distances = distances_
|
444 |
+
return distances[-1]
|
445 |
+
|
446 |
+
def train( in_csv, a_header, b_header, model, iterations, device, leading_context, trailing_context, train_percentage, verbose ):
|
447 |
if verbose: print( "loading csv" )
|
448 |
full_data = pd.read_csv( in_csv )
|
449 |
|
|
|
452 |
|
453 |
if verbose: print( "parcing data for training" )
|
454 |
|
455 |
+
|
456 |
+
tm = Transmorgrifyer()
|
457 |
+
|
458 |
+
tm.train( from_sentances=train_data[a_header],
|
459 |
to_sentances=train_data[b_header],
|
460 |
iterations = iterations,
|
461 |
device = device,
|
462 |
+
leading_context = leading_context,
|
463 |
+
trailing_context = trailing_context,
|
464 |
verbose=verbose,
|
465 |
)
|
466 |
+
tm.save( model )
|
467 |
+
|
468 |
+
def execute( include_stats, in_csv, out_csv, a_header, b_header, model, execute_percentage, verbose ):
|
469 |
+
if verbose: print( "loading csv" )
|
470 |
+
|
471 |
+
full_data = pd.read_csv( in_csv )
|
472 |
+
|
473 |
+
split_index = int( (100-execute_percentage)/100*len(full_data) )
|
474 |
+
execute_data = full_data.iloc[split_index:,:].reset_index(drop=True)
|
475 |
+
|
476 |
+
|
477 |
+
tm = Transmorgrifyer()
|
478 |
+
tm.load( model )
|
479 |
+
|
480 |
+
results = list(tm.execute( execute_data[a_header ], verbose=verbose ))
|
481 |
+
|
482 |
+
|
483 |
+
if include_stats:
|
484 |
+
before_edit_distances = []
|
485 |
+
after_edit_distances = []
|
486 |
+
percent_improvement = []
|
487 |
+
|
488 |
+
for row in range(len( execute_data )):
|
489 |
+
before_edit_distances.append(
|
490 |
+
_levenshteinDistance( execute_data[a_header][row], execute_data[b_header][row] )
|
491 |
+
)
|
492 |
+
after_edit_distances.append(
|
493 |
+
_levenshteinDistance( results[row], execute_data[b_header][row] )
|
494 |
+
)
|
495 |
+
percent_improvement.append(
|
496 |
+
100*(before_edit_distances[row] - after_edit_distances[row])/max(1,before_edit_distances[row])
|
497 |
+
)
|
498 |
+
|
499 |
+
pd_results = pd.DataFrame( {
|
500 |
+
"in_data": execute_data[a_header],
|
501 |
+
"out_data": execute_data[b_header],
|
502 |
+
"generated_data": results,
|
503 |
+
"before_edit_distance": before_edit_distances,
|
504 |
+
"after_edit_distance": after_edit_distances,
|
505 |
+
"percent_improvement": percent_improvement,
|
506 |
+
})
|
507 |
+
pd_results.to_csv( out_csv )
|
508 |
+
else:
|
509 |
+
pd_results = pd.DataFrame( {
|
510 |
+
"out_data": execute_data[b_header],
|
511 |
+
})
|
512 |
+
pd_results.to_csv( out_csv )
|
513 |
+
|
514 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
|
516 |
def main():
|
517 |
parser = argparse.ArgumentParser(
|
|
|
530 |
parser.add_argument('-p', '--train_percentage', help="The percentage of data to train on, leaving the rest for testing.")
|
531 |
parser.add_argument('-e', '--execute', action='store_true', help='Use an existing trained model.')
|
532 |
parser.add_argument('-v', '--verbose', action='store_true', help='Talks alot?' )
|
533 |
+
parser.add_argument('-s', '--include_stats', action='store_true', help='Use b_header to compute stats and add to output csv.')
|
534 |
|
535 |
|
536 |
args = parser.parse_args()
|
|
|
539 |
|
540 |
|
541 |
if args.train:
|
|
|
542 |
train_percentage = args.train_percentage
|
543 |
if train_percentage is None:
|
544 |
if args.execute:
|
|
|
558 |
verbose=args.verbose,
|
559 |
)
|
560 |
|
561 |
+
|
562 |
+
if args.execute:
|
563 |
+
if args.train_percentage is None:
|
564 |
+
if args.train:
|
565 |
+
execute_percentage = 50
|
566 |
+
else:
|
567 |
+
execute_percentage = 100
|
568 |
+
else:
|
569 |
+
execute_percentage = 100-args.train_percentage
|
570 |
+
execute(
|
571 |
+
include_stats=args.include_stats,
|
572 |
+
in_csv=args.in_csv,
|
573 |
+
out_csv=args.out_csv,
|
574 |
+
a_header=args.a_header,
|
575 |
+
b_header=args.b_header,
|
576 |
+
model=args.model,
|
577 |
+
execute_percentage=execute_percentage,
|
578 |
+
verbose=args.verbose,
|
579 |
+
)
|
580 |
+
|
581 |
|
582 |
|
583 |
if __name__ == '__main__':
|