Spaces:
Runtime error
Runtime error
Joshua Lansford
commited on
Commit
·
fbbf27f
1
Parent(s):
6f3a3e1
Fixing spelling of sentance to sentence in files.
Browse files- .vscode/launch.json +6 -6
- README.md +18 -18
- app.py +1 -1
- example_train.py +2 -2
- examples/piglattin/prepare_training_data.py +1 -1
- run_tests.sh +8 -8
- run_tests2.sh +4 -4
- transmorgrify.py +29 -29
.vscode/launch.json
CHANGED
|
@@ -21,7 +21,7 @@
|
|
| 21 |
"justMyCode": true,
|
| 22 |
"args": [
|
| 23 |
"--train",
|
| 24 |
-
"--in_csv", "/home/lansford/Sync/projects/tf_over/
|
| 25 |
"--a_header", "English",
|
| 26 |
"--b_header", "Phonetic",
|
| 27 |
"--device", "0:1",
|
|
@@ -36,7 +36,7 @@
|
|
| 36 |
"justMyCode": true,
|
| 37 |
"args": [
|
| 38 |
"--train",
|
| 39 |
-
"--in_csv", "/home/lansford/Sync/projects/tf_over/
|
| 40 |
"--b_header", "English",
|
| 41 |
"--a_header", "Phonetic",
|
| 42 |
"--device", "0:1",
|
|
@@ -51,7 +51,7 @@
|
|
| 51 |
"justMyCode": true,
|
| 52 |
"args": [
|
| 53 |
"--train",
|
| 54 |
-
"--in_csv", "/home/lansford/Sync/projects/tf_over/
|
| 55 |
"--a_header", "English",
|
| 56 |
"--b_header", "Phonetic",
|
| 57 |
"--device", "0:1",
|
|
@@ -66,7 +66,7 @@
|
|
| 66 |
"justMyCode": true,
|
| 67 |
"args": [
|
| 68 |
"--execute",
|
| 69 |
-
"--in_csv", "/home/lansford/Sync/projects/tf_over/
|
| 70 |
"--out_csv", "./phonetic_out.csv",
|
| 71 |
"--a_header", "English",
|
| 72 |
"--b_header", "Phonetic",
|
|
@@ -83,7 +83,7 @@
|
|
| 83 |
"justMyCode": true,
|
| 84 |
"args": [
|
| 85 |
"--execute",
|
| 86 |
-
"--in_csv", "/home/lansford/Sync/projects/tf_over/
|
| 87 |
"--out_csv", "./phonetic_out.csv",
|
| 88 |
"--a_header", "English",
|
| 89 |
"--b_header", "Phonetic",
|
|
@@ -100,7 +100,7 @@
|
|
| 100 |
"justMyCode": true,
|
| 101 |
"args": [
|
| 102 |
"--execute",
|
| 103 |
-
"--in_csv", "/home/lansford/Sync/projects/tf_over/
|
| 104 |
"--out_csv", "./reverse_phonetic_out.csv",
|
| 105 |
"--b_header", "English",
|
| 106 |
"--a_header", "Phonetic",
|
|
|
|
| 21 |
"justMyCode": true,
|
| 22 |
"args": [
|
| 23 |
"--train",
|
| 24 |
+
"--in_csv", "/home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/phonetic/phonetic.csv",
|
| 25 |
"--a_header", "English",
|
| 26 |
"--b_header", "Phonetic",
|
| 27 |
"--device", "0:1",
|
|
|
|
| 36 |
"justMyCode": true,
|
| 37 |
"args": [
|
| 38 |
"--train",
|
| 39 |
+
"--in_csv", "/home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/phonetic/phonetic.csv",
|
| 40 |
"--b_header", "English",
|
| 41 |
"--a_header", "Phonetic",
|
| 42 |
"--device", "0:1",
|
|
|
|
| 51 |
"justMyCode": true,
|
| 52 |
"args": [
|
| 53 |
"--train",
|
| 54 |
+
"--in_csv", "/home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/phonetic/phonetic_short.csv",
|
| 55 |
"--a_header", "English",
|
| 56 |
"--b_header", "Phonetic",
|
| 57 |
"--device", "0:1",
|
|
|
|
| 66 |
"justMyCode": true,
|
| 67 |
"args": [
|
| 68 |
"--execute",
|
| 69 |
+
"--in_csv", "/home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/phonetic/phonetic.csv",
|
| 70 |
"--out_csv", "./phonetic_out.csv",
|
| 71 |
"--a_header", "English",
|
| 72 |
"--b_header", "Phonetic",
|
|
|
|
| 83 |
"justMyCode": true,
|
| 84 |
"args": [
|
| 85 |
"--execute",
|
| 86 |
+
"--in_csv", "/home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/phonetic/phonetic_short.csv",
|
| 87 |
"--out_csv", "./phonetic_out.csv",
|
| 88 |
"--a_header", "English",
|
| 89 |
"--b_header", "Phonetic",
|
|
|
|
| 100 |
"justMyCode": true,
|
| 101 |
"args": [
|
| 102 |
"--execute",
|
| 103 |
+
"--in_csv", "/home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/phonetic/phonetic_short.csv",
|
| 104 |
"--out_csv", "./reverse_phonetic_out.csv",
|
| 105 |
"--b_header", "English",
|
| 106 |
"--a_header", "Phonetic",
|
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: s
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: yellow
|
|
@@ -10,24 +10,24 @@ pinned: false
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
##
|
| 14 |
|
| 15 |
-
# What is the
|
| 16 |
-
- The
|
| 17 |
- This library does not use neural net or word embeddings but does the transformation on the character level.
|
| 18 |
-
- For
|
| 19 |
-
- The model uses a modified form of the [logest common subsequence algorithm](https://en.wikipedia.org/wiki/Longest_common_subsequence_problem) to transform the
|
| 20 |
1. Match: Pass the character from input to output
|
| 21 |
2. Drop: Remove the incoming character from the input.
|
| 22 |
3. Insert: Generate a character and add it to the output.
|
| 23 |
- The transformation uses a sliding context window of the next n incoming characters, ``n`` output transformed chars and n output untransformed chars.
|
| 24 |
- Because the window is sliding, there is no fixed length on the character sequences which can be transformed.
|
| 25 |
|
| 26 |
-
# Where is the code and a demo of said
|
| 27 |
-
- There is a [
|
| 28 |
-
- A branch of the code without the trained example models is checked in at the [
|
| 29 |
|
| 30 |
-
# How can I use the
|
| 31 |
- The project has been configured to be able to be used in two different ways.
|
| 32 |
|
| 33 |
## Shell access
|
|
@@ -35,7 +35,7 @@ license: apache-2.0
|
|
| 35 |
|
| 36 |
```sh
|
| 37 |
python transmorgrify.py \
|
| 38 |
-
--train --in_csv
|
| 39 |
--a_header English \
|
| 40 |
--b_header Phonetic\
|
| 41 |
--device 0:1 \
|
|
@@ -56,7 +56,7 @@ python transmorgrify.py \
|
|
| 56 |
```sh
|
| 57 |
python transmorgrify.py \
|
| 58 |
--execute \
|
| 59 |
-
--in_csv
|
| 60 |
--a_header English \
|
| 61 |
--b_header Phonetic\
|
| 62 |
--device cpu \
|
|
@@ -83,8 +83,8 @@ python transmorgrify.py \
|
|
| 83 |
Train the Transmorgrifier model. This does not save it to disk but just trains in memory.
|
| 84 |
|
| 85 |
Keyword arguments:
|
| 86 |
-
|
| 87 |
-
|
| 88 |
iterations -- An integer specifying the number of iterations to convert from or to. (default 4000)
|
| 89 |
device -- The gpu reference which catboost wants or "cpu". (default cpu)
|
| 90 |
trailing_context -- The number of characters after the action point to include for context. (default 7)
|
|
@@ -109,10 +109,10 @@ model -- The filename of the model to load. (default my_model.tm)
|
|
| 109 |
```
|
| 110 |
Runs the data from from_sentaces. The results are returned
|
| 111 |
using yield so you need to wrap this in list() if you want
|
| 112 |
-
to index it.
|
| 113 |
|
| 114 |
Keyword arguments:
|
| 115 |
-
|
| 116 |
```
|
| 117 |
- Here is an example of using object access to train a model
|
| 118 |
```python
|
|
@@ -125,8 +125,8 @@ train_data = pd.read_csv( "training.csv" )
|
|
| 125 |
#do the training
|
| 126 |
my_model = transmorgrify.Transmorgrifier()
|
| 127 |
my_model.train(
|
| 128 |
-
|
| 129 |
-
|
| 130 |
iterations=4000 )
|
| 131 |
|
| 132 |
#save the results
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Sentence Transmorgrifier
|
| 3 |
emoji: s
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: yellow
|
|
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
## Sentence Transmorgrifier
|
| 14 |
|
| 15 |
+
# What is the Sentence Transmorgrifier?
|
| 16 |
+
- The Sentence Transmorgrifier is a framework to make text to text conversion models which uses a categorical gradiant boost library, [catboost](https://catboost.ai/), as its back end.
|
| 17 |
- This library does not use neural net or word embeddings but does the transformation on the character level.
|
| 18 |
+
- For Sentence Transmorgrifier to work, there has to be some common characters between the from and two conversion.
|
| 19 |
+
- The model uses a modified form of the [logest common subsequence algorithm](https://en.wikipedia.org/wiki/Longest_common_subsequence_problem) to transform the sentence conversion into a sequence of three types of operations:
|
| 20 |
1. Match: Pass the character from input to output
|
| 21 |
2. Drop: Remove the incoming character from the input.
|
| 22 |
3. Insert: Generate a character and add it to the output.
|
| 23 |
- The transformation uses a sliding context window of the next n incoming characters, ``n`` output transformed chars and n output untransformed chars.
|
| 24 |
- Because the window is sliding, there is no fixed length on the character sequences which can be transformed.
|
| 25 |
|
| 26 |
+
# Where is the code and a demo of said Sentence Transmorgrifier?
|
| 27 |
+
- There is a [Sentence Transmorgrifier HuggingFace space](https://huggingface.co/spaces/JEdward7777/SentenceTransmorgrifier) demoing a couple models created with Sentence Transmorgrifier.
|
| 28 |
+
- A branch of the code without the trained example models is checked in at the [Sentence Transmorgrifier Github page](https://github.com/JEdward7777/SentenceTransmogrifier).
|
| 29 |
|
| 30 |
+
# How can I use the Sentence Transmorgrifier
|
| 31 |
- The project has been configured to be able to be used in two different ways.
|
| 32 |
|
| 33 |
## Shell access
|
|
|
|
| 35 |
|
| 36 |
```sh
|
| 37 |
python transmorgrify.py \
|
| 38 |
+
--train --in_csv ./examples/phonetic/phonetic.csv \
|
| 39 |
--a_header English \
|
| 40 |
--b_header Phonetic\
|
| 41 |
--device 0:1 \
|
|
|
|
| 56 |
```sh
|
| 57 |
python transmorgrify.py \
|
| 58 |
--execute \
|
| 59 |
+
--in_csv ./examples/phonetic/phonetic.csv \
|
| 60 |
--a_header English \
|
| 61 |
--b_header Phonetic\
|
| 62 |
--device cpu \
|
|
|
|
| 83 |
Train the Transmorgrifier model. This does not save it to disk but just trains in memory.
|
| 84 |
|
| 85 |
Keyword arguments:
|
| 86 |
+
from_sentences -- An array of strings for the input sentences.
|
| 87 |
+
to_sentences -- An array of strings of the same length as from_sentences which the model is to train to convert to.
|
| 88 |
iterations -- An integer specifying the number of iterations to convert from or to. (default 4000)
|
| 89 |
device -- The gpu reference which catboost wants or "cpu". (default cpu)
|
| 90 |
trailing_context -- The number of characters after the action point to include for context. (default 7)
|
|
|
|
| 109 |
```
|
| 110 |
Runs the data from from_sentaces. The results are returned
|
| 111 |
using yield so you need to wrap this in list() if you want
|
| 112 |
+
to index it. from_sentences can be an array or a generator.
|
| 113 |
|
| 114 |
Keyword arguments:
|
| 115 |
+
from_sentences -- Something iterable which returns strings.
|
| 116 |
```
|
| 117 |
- Here is an example of using object access to train a model
|
| 118 |
```python
|
|
|
|
| 125 |
#do the training
|
| 126 |
my_model = transmorgrify.Transmorgrifier()
|
| 127 |
my_model.train(
|
| 128 |
+
from_sentences=train_data["from_header"],
|
| 129 |
+
to_sentences=train_data["to_header"],
|
| 130 |
iterations=4000 )
|
| 131 |
|
| 132 |
#save the results
|
app.py
CHANGED
|
@@ -29,7 +29,7 @@ def pig_to_eng( input ):
|
|
| 29 |
with gr.Blocks() as demo:
|
| 30 |
gr.Markdown(
|
| 31 |
"""
|
| 32 |
-
#
|
| 33 |
The following demos have been trained on different tasks.
|
| 34 |
Select the tab below for a demo.
|
| 35 |
"""
|
|
|
|
| 29 |
with gr.Blocks() as demo:
|
| 30 |
gr.Markdown(
|
| 31 |
"""
|
| 32 |
+
# Sentence Transmorgrifier demo
|
| 33 |
The following demos have been trained on different tasks.
|
| 34 |
Select the tab below for a demo.
|
| 35 |
"""
|
example_train.py
CHANGED
|
@@ -7,8 +7,8 @@ train_data = pd.read_csv( "phonetics_out_gpu_4000.csv" )[0:100]
|
|
| 7 |
#do the training
|
| 8 |
my_model = transmorgrify.Transmorgrifier()
|
| 9 |
my_model.train(
|
| 10 |
-
|
| 11 |
-
|
| 12 |
iterations=100, )
|
| 13 |
|
| 14 |
#save the results
|
|
|
|
| 7 |
#do the training
|
| 8 |
my_model = transmorgrify.Transmorgrifier()
|
| 9 |
my_model.train(
|
| 10 |
+
from_sentences=train_data["in_data"],
|
| 11 |
+
to_sentences=train_data["out_data"],
|
| 12 |
iterations=100, )
|
| 13 |
|
| 14 |
#save the results
|
examples/piglattin/prepare_training_data.py
CHANGED
|
@@ -39,7 +39,7 @@ def english_to_piglattin( english ):
|
|
| 39 |
else:
|
| 40 |
piglattin += "yay" + char
|
| 41 |
|
| 42 |
-
#end of
|
| 43 |
if in_word:
|
| 44 |
if start:
|
| 45 |
piglattin += start.lower() + "ay"
|
|
|
|
| 39 |
else:
|
| 40 |
piglattin += "yay" + char
|
| 41 |
|
| 42 |
+
#end of sentence needs done as well.
|
| 43 |
if in_word:
|
| 44 |
if start:
|
| 45 |
piglattin += start.lower() + "ay"
|
run_tests.sh
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
!/usr/bin/env bash
|
| 2 |
# echo test 1
|
| 3 |
# ./venv/bin/python transmorgrify.py \
|
| 4 |
-
# --train --in_csv /home/lansford/Sync/projects/tf_over/
|
| 5 |
# --a_header English \
|
| 6 |
# --b_header Phonetic\
|
| 7 |
# --device 0:1 \
|
|
@@ -11,7 +11,7 @@
|
|
| 11 |
# --train_percentage 50
|
| 12 |
# echo test 2
|
| 13 |
# ./venv/bin/python transmorgrify.py \
|
| 14 |
-
# --train --in_csv /home/lansford/Sync/projects/tf_over/
|
| 15 |
# --a_header English \
|
| 16 |
# --b_header Phonetic\
|
| 17 |
# --device cpu \
|
|
@@ -21,7 +21,7 @@
|
|
| 21 |
# --train_percentage 50
|
| 22 |
# echo test 1b
|
| 23 |
# ./venv/bin/python transmorgrify.py \
|
| 24 |
-
# --train --in_csv /home/lansford/Sync/projects/tf_over/
|
| 25 |
# --b_header English \
|
| 26 |
# --a_header Phonetic\
|
| 27 |
# --device 0:1 \
|
|
@@ -31,7 +31,7 @@
|
|
| 31 |
# --train_percentage 50
|
| 32 |
# echo test 3
|
| 33 |
# ./venv/bin/python transmorgrify.py \
|
| 34 |
-
# --train --in_csv /home/lansford/Sync/projects/tf_over/
|
| 35 |
# --b_header English \
|
| 36 |
# --a_header Phonetic\
|
| 37 |
# --device cpu \
|
|
@@ -42,7 +42,7 @@
|
|
| 42 |
echo test 4
|
| 43 |
./venv/bin/python transmorgrify.py \
|
| 44 |
--execute \
|
| 45 |
-
--in_csv /home/lansford/Sync/projects/tf_over/
|
| 46 |
--a_header Phonetic\
|
| 47 |
--b_header English \
|
| 48 |
--device cpu \
|
|
@@ -54,7 +54,7 @@ echo test 4
|
|
| 54 |
echo test 5
|
| 55 |
./venv/bin/python transmorgrify.py \
|
| 56 |
--execute \
|
| 57 |
-
--in_csv /home/lansford/Sync/projects/tf_over/
|
| 58 |
--a_header English \
|
| 59 |
--b_header Phonetic\
|
| 60 |
--device cpu \
|
|
@@ -68,7 +68,7 @@ echo test 5
|
|
| 68 |
echo test 4
|
| 69 |
./venv/bin/python transmorgrify.py \
|
| 70 |
--execute \
|
| 71 |
-
--in_csv /home/lansford/Sync/projects/tf_over/
|
| 72 |
--a_header Piglattin\
|
| 73 |
--b_header English \
|
| 74 |
--device cpu \
|
|
@@ -80,7 +80,7 @@ echo test 4
|
|
| 80 |
echo test 5
|
| 81 |
./venv/bin/python transmorgrify.py \
|
| 82 |
--execute \
|
| 83 |
-
--in_csv /home/lansford/Sync/projects/tf_over/
|
| 84 |
--a_header English \
|
| 85 |
--b_header Piglattin\
|
| 86 |
--device cpu \
|
|
|
|
| 1 |
!/usr/bin/env bash
|
| 2 |
# echo test 1
|
| 3 |
# ./venv/bin/python transmorgrify.py \
|
| 4 |
+
# --train --in_csv /home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/phonetic/phonetic.csv \
|
| 5 |
# --a_header English \
|
| 6 |
# --b_header Phonetic\
|
| 7 |
# --device 0:1 \
|
|
|
|
| 11 |
# --train_percentage 50
|
| 12 |
# echo test 2
|
| 13 |
# ./venv/bin/python transmorgrify.py \
|
| 14 |
+
# --train --in_csv /home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/phonetic/phonetic.csv \
|
| 15 |
# --a_header English \
|
| 16 |
# --b_header Phonetic\
|
| 17 |
# --device cpu \
|
|
|
|
| 21 |
# --train_percentage 50
|
| 22 |
# echo test 1b
|
| 23 |
# ./venv/bin/python transmorgrify.py \
|
| 24 |
+
# --train --in_csv /home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/phonetic/phonetic.csv \
|
| 25 |
# --b_header English \
|
| 26 |
# --a_header Phonetic\
|
| 27 |
# --device 0:1 \
|
|
|
|
| 31 |
# --train_percentage 50
|
| 32 |
# echo test 3
|
| 33 |
# ./venv/bin/python transmorgrify.py \
|
| 34 |
+
# --train --in_csv /home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/phonetic/phonetic.csv \
|
| 35 |
# --b_header English \
|
| 36 |
# --a_header Phonetic\
|
| 37 |
# --device cpu \
|
|
|
|
| 42 |
echo test 4
|
| 43 |
./venv/bin/python transmorgrify.py \
|
| 44 |
--execute \
|
| 45 |
+
--in_csv /home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/phonetic/phonetic.csv \
|
| 46 |
--a_header Phonetic\
|
| 47 |
--b_header English \
|
| 48 |
--device cpu \
|
|
|
|
| 54 |
echo test 5
|
| 55 |
./venv/bin/python transmorgrify.py \
|
| 56 |
--execute \
|
| 57 |
+
--in_csv /home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/phonetic/phonetic.csv \
|
| 58 |
--a_header English \
|
| 59 |
--b_header Phonetic\
|
| 60 |
--device cpu \
|
|
|
|
| 68 |
echo test 4
|
| 69 |
./venv/bin/python transmorgrify.py \
|
| 70 |
--execute \
|
| 71 |
+
--in_csv /home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/piglattin/pig_lattin.csv \
|
| 72 |
--a_header Piglattin\
|
| 73 |
--b_header English \
|
| 74 |
--device cpu \
|
|
|
|
| 80 |
echo test 5
|
| 81 |
./venv/bin/python transmorgrify.py \
|
| 82 |
--execute \
|
| 83 |
+
--in_csv /home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/piglattin/pig_lattin.csv \
|
| 84 |
--a_header English \
|
| 85 |
--b_header Piglattin\
|
| 86 |
--device cpu \
|
run_tests2.sh
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
# !/usr/bin/env bash
|
| 2 |
# echo test 1
|
| 3 |
# ./venv/bin/python transmorgrify.py \
|
| 4 |
-
# --train --in_csv /home/lansford/Sync/projects/tf_over/
|
| 5 |
# --a_header English \
|
| 6 |
# --b_header Piglattin\
|
| 7 |
# --device 0:1 \
|
|
@@ -11,7 +11,7 @@
|
|
| 11 |
# --train_percentage 50
|
| 12 |
# echo test 1b
|
| 13 |
# ./venv/bin/python transmorgrify.py \
|
| 14 |
-
# --train --in_csv /home/lansford/Sync/projects/tf_over/
|
| 15 |
# --b_header English \
|
| 16 |
# --a_header Piglattin\
|
| 17 |
# --device 0:1 \
|
|
@@ -22,7 +22,7 @@
|
|
| 22 |
# echo test 4
|
| 23 |
# ./venv/bin/python transmorgrify.py \
|
| 24 |
# --execute \
|
| 25 |
-
# --in_csv /home/lansford/Sync/projects/tf_over/
|
| 26 |
# --a_header Piglattin\
|
| 27 |
# --b_header English \
|
| 28 |
# --device cpu \
|
|
@@ -34,7 +34,7 @@
|
|
| 34 |
# echo test 5
|
| 35 |
# ./venv/bin/python transmorgrify.py \
|
| 36 |
# --execute \
|
| 37 |
-
# --in_csv /home/lansford/Sync/projects/tf_over/
|
| 38 |
# --a_header English \
|
| 39 |
# --b_header Piglattin\
|
| 40 |
# --device cpu \
|
|
|
|
| 1 |
# !/usr/bin/env bash
|
| 2 |
# echo test 1
|
| 3 |
# ./venv/bin/python transmorgrify.py \
|
| 4 |
+
# --train --in_csv /home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/piglattin/pig_lattin.csv \
|
| 5 |
# --a_header English \
|
| 6 |
# --b_header Piglattin\
|
| 7 |
# --device 0:1 \
|
|
|
|
| 11 |
# --train_percentage 50
|
| 12 |
# echo test 1b
|
| 13 |
# ./venv/bin/python transmorgrify.py \
|
| 14 |
+
# --train --in_csv /home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/piglattin/pig_lattin.csv \
|
| 15 |
# --b_header English \
|
| 16 |
# --a_header Piglattin\
|
| 17 |
# --device 0:1 \
|
|
|
|
| 22 |
# echo test 4
|
| 23 |
# ./venv/bin/python transmorgrify.py \
|
| 24 |
# --execute \
|
| 25 |
+
# --in_csv /home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/piglattin/pig_lattin.csv \
|
| 26 |
# --a_header Piglattin\
|
| 27 |
# --b_header English \
|
| 28 |
# --device cpu \
|
|
|
|
| 34 |
# echo test 5
|
| 35 |
# ./venv/bin/python transmorgrify.py \
|
| 36 |
# --execute \
|
| 37 |
+
# --in_csv /home/lansford/Sync/projects/tf_over/sentence_transmogrifier/examples/piglattin/pig_lattin.csv \
|
| 38 |
# --a_header English \
|
| 39 |
# --b_header Piglattin\
|
| 40 |
# --device cpu \
|
transmorgrify.py
CHANGED
|
@@ -15,20 +15,20 @@ START = 3
|
|
| 15 |
FILE_VERSION = 1
|
| 16 |
|
| 17 |
class Transmorgrifier:
|
| 18 |
-
def train( self,
|
| 19 |
"""
|
| 20 |
Train the Transmorgrifier model. This does not save it to disk but just trains in memory.
|
| 21 |
|
| 22 |
Keyword arguments:
|
| 23 |
-
|
| 24 |
-
|
| 25 |
iterations -- An integer specifying the number of iterations to convert from or to. (default 4000)
|
| 26 |
device -- The gpu reference which catboost wants or "cpu". (default cpu)
|
| 27 |
trailing_context -- The number of characters after the action point to include for context. (default 7)
|
| 28 |
leading_context -- The number of characters before the action point to include for context. (default 7)
|
| 29 |
verbose -- Increased the amount of text output during training. (default True)
|
| 30 |
"""
|
| 31 |
-
X,Y = _parse_for_training(
|
| 32 |
|
| 33 |
#train and save the action_model
|
| 34 |
self.action_model = _train_catboost( X, Y['action'], iterations, verbose=verbose, device=device, model_piece='action' )
|
|
@@ -99,25 +99,25 @@ class Transmorgrifier:
|
|
| 99 |
return self
|
| 100 |
|
| 101 |
|
| 102 |
-
def execute( self,
|
| 103 |
"""
|
| 104 |
Runs the data from from_sentaces. The results are returned
|
| 105 |
using yield so you need to wrap this in list() if you want
|
| 106 |
-
to index it.
|
| 107 |
|
| 108 |
Keyword arguments:
|
| 109 |
-
|
| 110 |
"""
|
| 111 |
-
for i,
|
| 112 |
|
| 113 |
yield _do_reconstruct(
|
| 114 |
action_model=self.action_model,
|
| 115 |
char_model=self.char_model,
|
| 116 |
-
text=
|
| 117 |
num_pre_context_chars=self.leading_context,
|
| 118 |
num_post_context_chars=self.trailing_context )
|
| 119 |
if verbose and i % 10 == 0:
|
| 120 |
-
print( f"{i} of {len(
|
| 121 |
|
| 122 |
def demo( self, share=False ):
|
| 123 |
import gradio as gr
|
|
@@ -162,7 +162,7 @@ class _edit_trace_hop():
|
|
| 162 |
def __repr__( self ):
|
| 163 |
return self.__str__()
|
| 164 |
|
| 165 |
-
def _trace_edits(
|
| 166 |
#iterating from will be the rows down the left side.
|
| 167 |
#iterating to will be the columns across the top.
|
| 168 |
#we will keep one row as we work on the next.
|
|
@@ -173,9 +173,9 @@ def _trace_edits( from_sentance, to_sentance, print_debug=False ):
|
|
| 173 |
#the index handles one before the index in the string
|
| 174 |
#to handle the root cases across the top and down the left of the
|
| 175 |
#match matrix.
|
| 176 |
-
for from_row_i in range( len(
|
| 177 |
|
| 178 |
-
for to_column_i in range( len(
|
| 179 |
|
| 180 |
best_option = None
|
| 181 |
|
|
@@ -195,7 +195,7 @@ def _trace_edits( from_sentance, to_sentance, print_debug=False ):
|
|
| 195 |
best_option = _edit_trace_hop()
|
| 196 |
best_option.parrent = current_row[to_column_i-1]
|
| 197 |
best_option.edit_distance = best_option.parrent.edit_distance + 1
|
| 198 |
-
best_option.char =
|
| 199 |
best_option.from_row_i = from_row_i
|
| 200 |
best_option.to_column_i = to_column_i
|
| 201 |
best_option.action = INSERT_TO
|
|
@@ -206,19 +206,19 @@ def _trace_edits( from_sentance, to_sentance, print_debug=False ):
|
|
| 206 |
best_option = _edit_trace_hop()
|
| 207 |
best_option.parrent = last_row[to_column_i]
|
| 208 |
best_option.edit_distance = best_option.parrent.edit_distance + 1
|
| 209 |
-
best_option.char =
|
| 210 |
best_option.from_row_i = from_row_i
|
| 211 |
best_option.to_column_i = to_column_i
|
| 212 |
best_option.action = DELETE_FROM
|
| 213 |
|
| 214 |
#check match
|
| 215 |
if to_column_i > 0:
|
| 216 |
-
if
|
| 217 |
if best_option is None or last_row[to_column_i-1].edit_distance <= best_option.edit_distance: #prefer match so use <= than <
|
| 218 |
best_option = _edit_trace_hop()
|
| 219 |
best_option.parrent = last_row[to_column_i-1]
|
| 220 |
best_option.edit_distance = best_option.parrent.edit_distance + 1
|
| 221 |
-
best_option.char =
|
| 222 |
best_option.from_row_i = from_row_i
|
| 223 |
best_option.to_column_i = to_column_i
|
| 224 |
best_option.action = MATCH
|
|
@@ -246,8 +246,8 @@ def _trace_edits( from_sentance, to_sentance, print_debug=False ):
|
|
| 246 |
return last_row[-1]
|
| 247 |
|
| 248 |
|
| 249 |
-
def _parse_single_for_training(
|
| 250 |
-
trace = _trace_edits(
|
| 251 |
|
| 252 |
#we will collect a snapshot at each step.
|
| 253 |
trace_list = _list_trace(trace)
|
|
@@ -255,8 +255,8 @@ def _parse_single_for_training( from_sentance, to_sentance, num_pre_context_char
|
|
| 255 |
|
| 256 |
training_collection = []
|
| 257 |
|
| 258 |
-
#execute these things on the
|
| 259 |
-
working_from =
|
| 260 |
working_to = ""
|
| 261 |
used_from = ""
|
| 262 |
continuous_added = 0
|
|
@@ -298,7 +298,7 @@ def _parse_single_for_training( from_sentance, to_sentance, num_pre_context_char
|
|
| 298 |
continuous_dropped = 0
|
| 299 |
|
| 300 |
|
| 301 |
-
if
|
| 302 |
print( "Replay failure" )
|
| 303 |
|
| 304 |
#so now I have training_collection which is a list of dictionaries where each dictionary is an action with a context.
|
|
@@ -348,18 +348,18 @@ def _parse_single_for_training( from_sentance, to_sentance, num_pre_context_char
|
|
| 348 |
return pd.DataFrame( context_split_into_dict ), pd.DataFrame( result_split_into_dict )
|
| 349 |
|
| 350 |
|
| 351 |
-
def _parse_for_training(
|
| 352 |
out_observations_list = []
|
| 353 |
out_results_list = []
|
| 354 |
|
| 355 |
-
for index, (
|
| 356 |
-
if type(
|
| 357 |
-
specific_observation, specific_result = _parse_single_for_training(
|
| 358 |
|
| 359 |
out_observations_list.append( specific_observation )
|
| 360 |
out_results_list.append( specific_result )
|
| 361 |
if index % 100 == 0:
|
| 362 |
-
print( f"parsing {index} of {len(
|
| 363 |
|
| 364 |
return pd.concat( out_observations_list ), pd.concat( out_results_list )
|
| 365 |
|
|
@@ -507,8 +507,8 @@ def train( in_csv, a_header, b_header, model, iterations, device, leading_contex
|
|
| 507 |
|
| 508 |
tm = Transmorgrifier()
|
| 509 |
|
| 510 |
-
tm.train(
|
| 511 |
-
|
| 512 |
iterations = iterations,
|
| 513 |
device = device,
|
| 514 |
leading_context = leading_context,
|
|
|
|
| 15 |
FILE_VERSION = 1
|
| 16 |
|
| 17 |
class Transmorgrifier:
|
| 18 |
+
def train( self, from_sentences, to_sentences, iterations = 4000, device = 'cpu', trailing_context = 7, leading_context = 7, verbose=True ):
|
| 19 |
"""
|
| 20 |
Train the Transmorgrifier model. This does not save it to disk but just trains in memory.
|
| 21 |
|
| 22 |
Keyword arguments:
|
| 23 |
+
from_sentences -- An array of strings for the input sentences.
|
| 24 |
+
to_sentences -- An array of strings of the same length as from_sentences which the model is to train to convert to.
|
| 25 |
iterations -- An integer specifying the number of iterations to convert from or to. (default 4000)
|
| 26 |
device -- The gpu reference which catboost wants or "cpu". (default cpu)
|
| 27 |
trailing_context -- The number of characters after the action point to include for context. (default 7)
|
| 28 |
leading_context -- The number of characters before the action point to include for context. (default 7)
|
| 29 |
verbose -- Increased the amount of text output during training. (default True)
|
| 30 |
"""
|
| 31 |
+
X,Y = _parse_for_training( from_sentences, to_sentences, num_pre_context_chars=leading_context, num_post_context_chars=trailing_context )
|
| 32 |
|
| 33 |
#train and save the action_model
|
| 34 |
self.action_model = _train_catboost( X, Y['action'], iterations, verbose=verbose, device=device, model_piece='action' )
|
|
|
|
| 99 |
return self
|
| 100 |
|
| 101 |
|
| 102 |
+
def execute( self, from_sentences, verbose=False ):
|
| 103 |
"""
|
| 104 |
Runs the data from from_sentaces. The results are returned
|
| 105 |
using yield so you need to wrap this in list() if you want
|
| 106 |
+
to index it. from_sentences can be an array or a generator.
|
| 107 |
|
| 108 |
Keyword arguments:
|
| 109 |
+
from_sentences -- Something iterable which returns strings.
|
| 110 |
"""
|
| 111 |
+
for i,from_sentence in enumerate(from_sentences):
|
| 112 |
|
| 113 |
yield _do_reconstruct(
|
| 114 |
action_model=self.action_model,
|
| 115 |
char_model=self.char_model,
|
| 116 |
+
text=from_sentence,
|
| 117 |
num_pre_context_chars=self.leading_context,
|
| 118 |
num_post_context_chars=self.trailing_context )
|
| 119 |
if verbose and i % 10 == 0:
|
| 120 |
+
print( f"{i} of {len(from_sentences)}" )
|
| 121 |
|
| 122 |
def demo( self, share=False ):
|
| 123 |
import gradio as gr
|
|
|
|
| 162 |
def __repr__( self ):
|
| 163 |
return self.__str__()
|
| 164 |
|
| 165 |
+
def _trace_edits( from_sentence, to_sentence, print_debug=False ):
|
| 166 |
#iterating from will be the rows down the left side.
|
| 167 |
#iterating to will be the columns across the top.
|
| 168 |
#we will keep one row as we work on the next.
|
|
|
|
| 173 |
#the index handles one before the index in the string
|
| 174 |
#to handle the root cases across the top and down the left of the
|
| 175 |
#match matrix.
|
| 176 |
+
for from_row_i in range( len(from_sentence)+1 ):
|
| 177 |
|
| 178 |
+
for to_column_i in range( len(to_sentence )+1 ):
|
| 179 |
|
| 180 |
best_option = None
|
| 181 |
|
|
|
|
| 195 |
best_option = _edit_trace_hop()
|
| 196 |
best_option.parrent = current_row[to_column_i-1]
|
| 197 |
best_option.edit_distance = best_option.parrent.edit_distance + 1
|
| 198 |
+
best_option.char = to_sentence[to_column_i-1]
|
| 199 |
best_option.from_row_i = from_row_i
|
| 200 |
best_option.to_column_i = to_column_i
|
| 201 |
best_option.action = INSERT_TO
|
|
|
|
| 206 |
best_option = _edit_trace_hop()
|
| 207 |
best_option.parrent = last_row[to_column_i]
|
| 208 |
best_option.edit_distance = best_option.parrent.edit_distance + 1
|
| 209 |
+
best_option.char = from_sentence[from_row_i-1]
|
| 210 |
best_option.from_row_i = from_row_i
|
| 211 |
best_option.to_column_i = to_column_i
|
| 212 |
best_option.action = DELETE_FROM
|
| 213 |
|
| 214 |
#check match
|
| 215 |
if to_column_i > 0:
|
| 216 |
+
if to_sentence[to_column_i-1] == from_sentence[from_row_i-1]:
|
| 217 |
if best_option is None or last_row[to_column_i-1].edit_distance <= best_option.edit_distance: #prefer match so use <= than <
|
| 218 |
best_option = _edit_trace_hop()
|
| 219 |
best_option.parrent = last_row[to_column_i-1]
|
| 220 |
best_option.edit_distance = best_option.parrent.edit_distance + 1
|
| 221 |
+
best_option.char = from_sentence[from_row_i-1]
|
| 222 |
best_option.from_row_i = from_row_i
|
| 223 |
best_option.to_column_i = to_column_i
|
| 224 |
best_option.action = MATCH
|
|
|
|
| 246 |
return last_row[-1]
|
| 247 |
|
| 248 |
|
| 249 |
+
def _parse_single_for_training( from_sentence, to_sentence, num_pre_context_chars, num_post_context_chars ):
|
| 250 |
+
trace = _trace_edits( from_sentence, to_sentence )
|
| 251 |
|
| 252 |
#we will collect a snapshot at each step.
|
| 253 |
trace_list = _list_trace(trace)
|
|
|
|
| 255 |
|
| 256 |
training_collection = []
|
| 257 |
|
| 258 |
+
#execute these things on the from_sentence and see if we get the to_sentence.
|
| 259 |
+
working_from = from_sentence
|
| 260 |
working_to = ""
|
| 261 |
used_from = ""
|
| 262 |
continuous_added = 0
|
|
|
|
| 298 |
continuous_dropped = 0
|
| 299 |
|
| 300 |
|
| 301 |
+
if to_sentence != working_to:
|
| 302 |
print( "Replay failure" )
|
| 303 |
|
| 304 |
#so now I have training_collection which is a list of dictionaries where each dictionary is an action with a context.
|
|
|
|
| 348 |
return pd.DataFrame( context_split_into_dict ), pd.DataFrame( result_split_into_dict )
|
| 349 |
|
| 350 |
|
| 351 |
+
def _parse_for_training( from_sentences, to_sentences, num_pre_context_chars, num_post_context_chars ):
|
| 352 |
out_observations_list = []
|
| 353 |
out_results_list = []
|
| 354 |
|
| 355 |
+
for index, (from_sentence, to_sentence) in enumerate(zip( from_sentences, to_sentences )):
|
| 356 |
+
if type(from_sentence) != float and type(to_sentence) != float: #bad lines are nan which are floats.
|
| 357 |
+
specific_observation, specific_result = _parse_single_for_training( from_sentence, to_sentence, num_pre_context_chars=num_pre_context_chars, num_post_context_chars=num_post_context_chars )
|
| 358 |
|
| 359 |
out_observations_list.append( specific_observation )
|
| 360 |
out_results_list.append( specific_result )
|
| 361 |
if index % 100 == 0:
|
| 362 |
+
print( f"parsing {index} of {len(from_sentences)}")
|
| 363 |
|
| 364 |
return pd.concat( out_observations_list ), pd.concat( out_results_list )
|
| 365 |
|
|
|
|
| 507 |
|
| 508 |
tm = Transmorgrifier()
|
| 509 |
|
| 510 |
+
tm.train( from_sentences=train_data[a_header],
|
| 511 |
+
to_sentences=train_data[b_header],
|
| 512 |
iterations = iterations,
|
| 513 |
device = device,
|
| 514 |
leading_context = leading_context,
|