Spaces:
Sleeping
Sleeping
File size: 12,098 Bytes
0dab632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
from dataclasses import dataclass
import numpy as np
import scipy.linalg as la
from scipy.signal import find_peaks
from math import ceil
def thin_points(point_list, dmin=10, voxel_size=(1,1,1)):
"""
Remove points within a specified distance of each other, retaining the point with the highest intensity.
Args:
- point_list (list of tuples): Each tuple contains:
- x (list of float): 3D coordinates of the point.
- intensity (float): The intensity value of the point.
- idx (int): A unique identifier or index for the point.
- dmin (float, optional): Minimum distance between points. Points closer than this threshold will be thinned. Defaults to 10.
Returns:
- list of int: A list containing indices of the removed points.
Notes:
- The function uses the L2 norm (Euclidean distance) to compute the distance between points.
- When two points are within `dmin` distance, the point with the lower intensity is removed.
"""
removed_points = []
for i in range(len(point_list)):
if point_list[i][2] in removed_points:
continue
for j in range(len(point_list)):
if i==j:
continue
if point_list[j][2] in removed_points:
continue
d = (np.array(point_list[i][0]) - np.array(point_list[j][0]))*np.array(voxel_size)
d = la.norm(d)
if d<dmin:
hi = point_list[i][1]
hj = point_list[j][1]
if hi<hj:
removed_points.append(point_list[i][2])
break
else:
removed_points.append(point_list[j][2])
return removed_points
@dataclass
class CellData(object):
"""Represents data related to a single cell.
Attributes:
pathdata_list (list): A list of PathData objects representing the various paths associated with the cell.
"""
pathdata_list: list
@dataclass
class PathData(object):
"""Represents data related to a specific path in the cell.
This dataclass encapsulates information about the peaks,
the defining points, the fluorescence values, and the path length of a specific path.
Attributes: peaks (list): List of peaks in the path (indicies of positions in points, o_hei10).
points (list): List of points defining the path.
o_hei10 (list): List of (unnormalized) fluorescence intensity values along the path
SC_length (float): Length of the path.
"""
peaks: list
points: list
o_hei10: list
SC_length: float
def find_peaks2(v, distance=5, prominence=0.5):
"""
Find peaks in a 1D array with extended boundary handling.
The function pads the input array at both ends to handle boundary peaks. It then identifies peaks in the extended array
and maps them back to the original input array.
Args:
- v (numpy.ndarray): 1D input array in which to find peaks.
- distance (int, optional): Minimum number of array elements that separate two peaks. Defaults to 5.
- prominence (float, optional): Minimum prominence required for a peak to be identified. Defaults to 0.5.
Returns:
- list of int: List containing the indices of the identified peaks in the original input array.
- dict: Information about the properties of the identified peaks (as returned by scipy.signal.find_peaks).
"""
pad = int(ceil(distance))+1
v_ext = np.concatenate([np.ones((pad,), dtype=v.dtype)*np.min(v), v, np.ones((pad,), dtype=v.dtype)*np.min(v)])
assert(len(v_ext) == len(v)+2*pad)
peaks, _ = find_peaks(v_ext, distance=distance, prominence=prominence)
peaks = peaks - pad
n_peaks = []
for i in peaks:
if 0<=i<len(v):
n_peaks.append(i)
else:
raise Exception
return n_peaks, _
def process_cell_traces(all_paths, path_lengths, measured_trace_fluorescence):
"""
Process traces of cells to extract peak information and organize the data.
The function normalizes fluorescence data, finds peaks, refines peak information,
removes unwanted peaks that might be due to close proximity of bright peaks from
other paths, and organizes all the information into a structured data format.
Args:
all_paths (list of list of tuples): A list containing paths, where each path is
represented as a list of 3D coordinate tuples.
path_lengths (list of float): List of path lengths corresponding to the provided paths.
measured_trace_fluorescence (list of list of float): A list containing fluorescence
data corresponding to each path point.
Returns:
CellData: An object containing organized peak and path data for a given cell.
Note:
- The function assumes that each path and its corresponding length and fluorescence data
are positioned at the same index in their respective lists.
"""
cell_peaks = []
for points, path_length, o_hei10 in zip(all_paths, path_lengths, measured_trace_fluorescence):
# For peak determination normalize each trace to have mean zero and s.d. 1
hei10_normalized = (o_hei10 - np.mean(o_hei10))/np.std(o_hei10)
# Find peaks - these will be further refined later
p,_ = find_peaks2(hei10_normalized, distance=5, prominence=0.5*np.std(hei10_normalized))
peaks = np.array(p, dtype=np.int32)
# Store peak data - using original values, not normalized ones
peak_mean_heights = [ o_hei10[u] for u in peaks ]
peak_points = [ points[u] for u in peaks ]
cell_peaks.append((peaks, peak_points, peak_mean_heights))
# Eliminate peaks which have another larger peak nearby (in 3D space, on any chromosome).
# This aims to remove small peaks in the mean intensity generated when an SC passes close
# to a bright peak on another SC - this is nearby in space, but brighter.
to_thin = []
for k in range(len(cell_peaks)):
for u in range(len(cell_peaks[k][0])):
to_thin.append((cell_peaks[k][1][u], cell_peaks[k][2][u], (k, u)))
# Exclude any peak with a nearby brighter peak (on any SC)
removed_points = thin_points(to_thin)
# Clean up and remove these peaks
new_cell_peaks = []
for k in range(len(cell_peaks)):
cc = []
pp = cell_peaks[k][0]
for u in range(len(pp)):
if (k,u) not in removed_points:
cc.append(pp[u])
new_cell_peaks.append(cc)
cell_peaks = new_cell_peaks
pd_list = []
# Save peak positions, absolute HEI10 intensities, and length for each SC
for k in range(len(all_paths)):
points, o_hei10 = all_paths[k], measured_trace_fluorescence[k]
peaks = cell_peaks[k]
pd = PathData(peaks=peaks, points=points, o_hei10=o_hei10, SC_length=path_lengths[k])
pd_list.append(pd)
cd = CellData(pathdata_list=pd_list)
return cd
alpha_max = 0.4
# Criterion used for identifying peak as a CO - normalized (with mean and s.d.)
# hei10 levels being above 0.4 time maximum peak level
def pc(pos, v, alpha=alpha_max):
"""
Identify and return positions where values in the array `v` exceed a certain threshold.
The threshold is computed as `alpha` times the maximum value in `v`.
Args:
- pos (numpy.ndarray): Array of positions.
- v (numpy.ndarray): 1D array of values, e.g., intensities.
- alpha (float, optional): A scaling factor for the threshold. Defaults to `alpha_max`.
Returns:
- numpy.ndarray: Array of positions where corresponding values in `v` exceed the threshold.
"""
idx = (v>=alpha*np.max(v))
return np.array(pos[idx])
def analyse_celldata(cell_data, config):
"""
Analyse the provided cell data to extract focus-related information.
Args:
cd (CellData): An instance of the CellData class containing path data information.
config (dictionary): Configuration dictionary containing 'peak_threshold' and 'threshold_type'
'peak_threshold' (float) - threshold for calling peaks as foci
'threshold_type' (str) = 'per-trace', 'per-foci'
Returns:
tuple: A tuple containing three lists:
- foci_rel_intensity (list): List of relative intensities for the detected foci.
- foci_pos (list): List of absolute positions of the detected foci.
- foci_pos_index (list): List of indices of the detected foci.
"""
foci_abs_intensity = []
foci_pos = []
foci_pos_index = []
trace_median_intensities = []
trace_thresholds = []
peak_threshold = config['peak_threshold']
threshold_type = config['threshold_type']
if threshold_type == 'per-trace':
"""
Call extracted peaks as foci if intensity - trace_mean > peak_threshold * (trace_max_foci_intensity - trace_mean)
"""
for path_data in cell_data.pathdata_list:
peaks = np.array(path_data.peaks, dtype=np.int32)
# Normalize extracted fluorescent intensities by subtracting mean (and dividing
# by standard deviation - note that the latter should have no effect on the results).
h = np.array(path_data.o_hei10)
h = h - np.mean(h)
h = h/np.std(h)
# Extract peaks according to criterion
sig_peak_idx = pc(peaks, h[peaks], peak_threshold)
trace_thresholds.append((1-peak_threshold)*np.mean(path_data.o_hei10) + peak_threshold*np.max(np.array(path_data.o_hei10)[peaks]))
pos_abs = (sig_peak_idx/len(path_data.points))*path_data.SC_length
foci_pos.append(pos_abs)
foci_abs_intensity.append(np.array(path_data.o_hei10)[sig_peak_idx])
foci_pos_index.append(sig_peak_idx)
trace_median_intensities.append(np.median(path_data.o_hei10))
elif threshold_type == 'per-cell':
"""
Call extracted peaks as foci if intensity - trace_mean > peak_threshold * max(intensity - trace_mean)
"""
max_cell_intensity = float("-inf")
for path_data in cell_data.pathdata_list:
# Normalize extracted fluorescent intensities by subtracting mean (and dividing
# by standard deviation - note that the latter should have no effect on the results).
h = np.array(path_data.o_hei10)
h = h - np.mean(h)
max_cell_intensity = max(max_cell_intensity, np.max(h))
for path_data in cell_data.pathdata_list:
peaks = np.array(path_data.peaks, dtype=np.int32)
# Normalize extracted fluorescent intensities by subtracting mean (and dividing
# by standard deviation - note that the latter should have no effect on the results).
h = np.array(path_data.o_hei10)
h = h - np.mean(h)
sig_peak_idx = peaks[h[peaks]>peak_threshold*max_cell_intensity]
trace_thresholds.append(np.mean(path_data.o_hei10) + peak_threshold*max_cell_intensity)
pos_abs = (sig_peak_idx/len(path_data.points))*path_data.SC_length
foci_pos.append(pos_abs)
foci_abs_intensity.append(np.array(path_data.o_hei10)[sig_peak_idx])
foci_pos_index.append(sig_peak_idx)
trace_median_intensities.append(np.median(path_data.o_hei10))
else:
raise NotImplementedError
return foci_abs_intensity, foci_pos, foci_pos_index, trace_median_intensities, trace_thresholds
def analyse_traces(all_paths, path_lengths, measured_trace_fluorescence, config):
cd = process_cell_traces(all_paths, path_lengths, measured_trace_fluorescence)
return analyse_celldata(cd, config)
|