Spaces:
Sleeping
Sleeping
File size: 14,663 Bytes
0dab632 016c3b8 0dab632 6756e43 0dab632 016c3b8 0dab632 016c3b8 0dab632 6756e43 0dab632 6756e43 0dab632 6756e43 0dab632 6756e43 0dab632 6756e43 0dab632 6756e43 0dab632 016c3b8 6756e43 016c3b8 6756e43 016c3b8 6756e43 016c3b8 6756e43 016c3b8 6756e43 016c3b8 6756e43 016c3b8 6756e43 016c3b8 6756e43 016c3b8 6756e43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import pytest
from path_analysis.analyse import *
from path_analysis.data_preprocess import RemovedPeakData
import numpy as np
from math import pi
import xml.etree.ElementTree as ET
from PIL import ImageChops
def test_draw_paths_no_error():
all_paths = [[[0, 0], [1, 1]], [[2, 2], [3, 3]]]
foci_stack = np.zeros((5, 5, 5))
foci_stack[0,0,0] = 1.0
foci_index = [[0], [1]]
r = 3
try:
im = draw_paths(all_paths, foci_stack, foci_index, r)
except Exception as e:
pytest.fail(f"draw_paths raised an exception: {e}")
def test_draw_paths_image_size():
all_paths = [[[0, 0], [1, 1]], [[2, 2], [3, 3]]]
foci_stack = np.zeros((5, 5, 5))
foci_stack[0,0,0] = 1.0
foci_index = [[0], [1]]
r = 3
im = draw_paths(all_paths, foci_stack, foci_index, r)
assert im.size == (5, 5), f"Expected image size (5, 5), got {im.size}"
def test_draw_paths_image_modified():
all_paths = [[[0, 0], [1, 1]], [[2, 2], [3, 3]]]
foci_stack = np.zeros((5, 5, 5))
foci_stack[0,0,0] = 1.0
foci_index = [[0], [1]]
r = 3
im = draw_paths(all_paths, foci_stack, foci_index, r)
blank_image = Image.new("RGB", (5, 5), "black")
# Check if the image is not entirely black (i.e., has been modified)
diff = ImageChops.difference(im, blank_image)
assert diff.getbbox() is not None, "The image has not been modified"
def test_calculate_path_length_partials_default_voxel():
point_list = [(0, 0, 0), (1, 0, 0), (1, 1, 1)]
expected_result = np.array([0.0, 1.0, 1.0+np.sqrt(2)])
result = calculate_path_length_partials(point_list)
np.testing.assert_allclose(result, expected_result, atol=1e-5)
def test_calculate_path_length_partials_custom_voxel():
point_list = [(0, 0, 0), (1, 0, 0), (1, 1, 0)]
voxel_size = (1, 2, 1)
expected_result = np.array([0.0, 1.0, 3.0])
result = calculate_path_length_partials(point_list, voxel_size=voxel_size)
np.testing.assert_allclose(result, expected_result, atol=1e-5)
def test_calculate_path_length_partials_single_point():
point_list = [(0, 0, 0)]
expected_result = np.array([0.0])
result = calculate_path_length_partials(point_list)
np.testing.assert_allclose(result, expected_result, atol=1e-5)
def test_get_paths_from_traces_file():
# Mock the XML traces file content
xml_content = '''<?xml version="1.0"?>
<root>
<path reallength="5.0">
<point x="1" y="2" z="3"/>
<point x="4" y="5" z="6"/>
</path>
<path reallength="10.0">
<point x="7" y="8" z="9"/>
<point x="10" y="11" z="12"/>
</path>
</root>
'''
# Create a temporary XML file
with open("temp_traces.xml", "w") as f:
f.write(xml_content)
all_paths, path_lengths = get_paths_from_traces_file("temp_traces.xml")
expected_paths = [[(1, 2, 3), (4, 5, 6)], [(7, 8, 9), (10, 11, 12)]]
expected_lengths = [5.0, 10.0]
assert all_paths == expected_paths, f"Expected paths {expected_paths}, but got {all_paths}"
assert path_lengths == expected_lengths, f"Expected lengths {expected_lengths}, but got {path_lengths}"
# Clean up temporary file
import os
os.remove("temp_traces.xml")
def test_measure_chrom2():
# Mock data
path = [(2, 3, 4), (4, 5, 6), (9, 9, 9)] # Sample ordered path points
intensity = np.random.rand(10, 10, 10) # Random 3D fluorescence data
config = {
'z_res': 1,
'xy_res': 0.5,
'sphere_radius': 2.5
}
# Function call
_, measurements, measurements_max = measure_chrom2(path, intensity, config)
# Assertions
assert len(measurements) == len(path), "Measurements length should match path length"
assert len(measurements_max) == len(path), "Max measurements length should match path length"
assert all(0 <= val <= 1 for val in measurements), "All mean measurements should be between 0 and 1 for this mock data"
assert all(0 <= val <= 1 for val in measurements_max), "All max measurements should be between 0 and 1 for this mock data"
def test_measure_chrom2_z():
# Mock data
path = [(2, 3, 4), (4, 5, 6)] # Sample ordered path points
_,_,intensity = np.meshgrid(np.arange(10), np.arange(10), np.arange(10)) # 3D fluorescence data - z dependent
config = {
'z_res': 1,
'xy_res': 0.5,
'sphere_radius': 2.5
}
# Function call
_, measurements, measurements_max = measure_chrom2(path, intensity, config)
# Assertions
assert len(measurements) == len(path), "Measurements length should match path length"
assert len(measurements_max) == len(path), "Max measurements length should match path length"
assert all(measurements == np.array([4,6]))
assert all(measurements_max == np.array([6,8]))
def test_measure_chrom2_z2():
# Mock data
path = [(0,0,0), (2, 3, 4), (4, 5, 6)] # Sample ordered path points
_,_,intensity = np.meshgrid(np.arange(10), np.arange(10), np.arange(10)) # 3D fluorescence data - z dependent
config = {
'z_res': 0.25,
'xy_res': 0.5,
'sphere_radius': 2.5
}
# Function call
_, measurements, measurements_max = measure_chrom2(path, intensity, config)
# Assertions
assert len(measurements) == len(path), "Measurements length should match path length"
assert len(measurements_max) == len(path), "Max measurements length should match path length"
assert all(measurements_max == np.array([9,9,9]))
def test_measure_from_mask():
mask = np.array([
[0, 1, 0],
[1, 1, 1],
[0, 1, 0]
])
measure_stack = np.array([
[2, 4, 2],
[4, 8, 4],
[2, 4, 2]
])
result = measure_from_mask(mask, measure_stack)
assert result == 24 # Expected sum: 4+4+8+4+4
def test_max_from_mask():
mask = np.array([
[0, 1, 0],
[1, 1, 1],
[0, 1, 0]
])
measure_stack = np.array([
[2, 5, 2],
[4, 8, 3],
[2, 7, 2]
])
result = max_from_mask(mask, measure_stack)
assert result == 8 # Expected max: 8
def test_measure_at_point_mean():
measure_stack = np.array([
[[2, 2, 2, 0], [4, 4, 6, 0], [3, 3, 2, 0], [0, 0, 0, 0]],
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]],
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
])
p = (1, 1, 1)
melem = np.ones((3, 3, 3))
result = measure_at_point(p, melem, measure_stack, op='mean')
assert result == 4, "Expected mean: 4"
def test_measure_at_point_mean_off1():
measure_stack = np.array([
[[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]],
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]],
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
])
p = (0, 0, 0)
melem = np.ones((3, 3, 3))
result = measure_at_point(p, melem, measure_stack, op='mean')
assert result == 4.5, "Expected mean: 4.5"
def test_measure_at_point_mean_off2():
measure_stack = np.array([
[[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]],
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]],
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
])
p = (3, 1, 1)
melem = np.ones((3, 3, 3))
print(measure_stack[p[0], p[1], p[2]])
result = measure_at_point(p, melem, measure_stack, op='mean')
assert result == 32/18 # Expected mean: 4.5
def test_measure_at_point_mean_off3():
measure_stack = np.array([
[[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]],
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]],
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
])
p = (3, 1, 1)
melem = np.ones((1, 1, 3))
print(measure_stack[p[0], p[1], p[2]])
result = measure_at_point(p, melem, measure_stack, op='mean')
assert result == 0, "Expected mean: 4.5"
def test_measure_at_point_mean_off3():
measure_stack = np.array([
[[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]],
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]],
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
])
p = (3, 1, 1)
melem = np.ones((3, 1, 1))
print(measure_stack[p[0], p[1], p[2]])
result = measure_at_point(p, melem, measure_stack, op='mean')
assert result == 3, "Expected mean: 4.5"
def test_measure_at_point_max():
measure_stack = np.array([
[[2, 2, 2], [4, 4, 4], [2, 2, 2]],
[[4, 5, 4], [8, 7, 9], [4, 4, 4]],
[[2, 2, 2], [4, 4, 4], [2, 2, 2]]
])
p = (1, 1, 1)
melem = np.ones((3, 3, 3))
result = measure_at_point(p, melem, measure_stack, op='max')
assert result == 9, "Expected max: 9"
def test_make_sphere_equal():
R = 5
z_scale_ratio = 1.0
sphere = make_sphere(R, z_scale_ratio)
# Check the returned type
assert isinstance(sphere, np.ndarray), "Output should be a numpy ndarray"
# Check the shape
expected_shape = (2*R+1, 2*R+1, 2*R+1)
assert sphere.shape == expected_shape, f"Expected shape {expected_shape}, but got {sphere.shape}"
assert (sphere[:,:,::-1] == sphere).all(), f"Expected symmetrical mask"
assert (sphere[:,::-1,:] == sphere).all(), f"Expected symmetrical mask"
assert (sphere[::-1,:,:] == sphere).all(), f"Expected symmetrical mask"
assert abs(np.sum(sphere)-4/3*pi*R**3)<10, f"Expected approximate volume to be correct"
assert (sphere[R,R,0] == 1), f"Expected centre point on top plane to be within sphere"
assert (sphere[R+1,R,0] == 0), f"Expected point next to centre on top plane to be outside sphere"
import pandas as pd
def test_extract_peaks_basic():
cell_id = 1 # Simple per-cell tag
all_paths = [[[0, 0, 0], [1, 1, 0]]] # Single, simple path
path_lengths = [1.41] # length of the above path
measured_traces = [[100, 200]] # fluorescence along the path
config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-cell', 'use_corrected_positions': True, 'screening_distance':10 }
df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config)
assert len(df) == 1, "Expected one row in DataFrame"
assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id"
assert list(df['Trace_foci_number']) == [1], "Wrong foci number"
assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2)
assert foci_pos_index == [[1]]
assert foci_absolute_intensity == [[200]]
assert screened_foci_data == [[]]
assert trace_thresholds == [ [ 150+0.4*50] ]
assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)]))
def test_extract_peaks_multiple_paths():
cell_id = 1
all_paths = [[[0, 0, 0], [1, 1, 0]], [[1, 1, 200], [2, 2, 200]]]
path_lengths = [1.41, 1.41]
measured_traces = [[100, 200], [100, 140]]
config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-trace', 'use_corrected_positions': True, 'screening_distance':10 }
df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config)
assert len(df) == 2, "Expected two rows in DataFrame"
assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id"
assert list(df['Trace_foci_number']) == [1,1], "Wrong foci number"
assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2)
print(foci_pos_index)
assert list(map(list, foci_pos_index)) == [[1],[1]]
assert list(map(list, foci_absolute_intensity)) == [[200],[140]]
assert trace_thresholds == [ 150+0.4*50, 120+0.4*20 ]
assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)]))
assert screened_foci_data == [[],[]]
def test_extract_peaks_multiple_paths_screened():
cell_id = 1
all_paths = [[[0, 0, 0], [1, 1, 0]], [[1, 1, 2], [2, 2, 2]]]
path_lengths = [1.41, 1.41]
measured_traces = [[100, 200], [100, 150]]
config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-trace', 'use_corrected_positions': True, 'screening_distance':10 }
df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config)
assert len(df) == 2, "Expected two rows in DataFrame"
assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id"
assert list(df['Trace_foci_number']) == [1,0], "Wrong foci number"
assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2)
print(foci_pos_index)
assert list(map(list, foci_pos_index)) == [[1],[]]
assert list(map(list, foci_absolute_intensity)) == [[200],[]]
assert trace_thresholds == [ 150+0.4*50, None ]
assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)]))
assert screened_foci_data == [[],[RemovedPeakData(idx=1, screening_peak=(0,1))]]
def test_extract_peaks_multiple_paths_per_cell():
cell_id = 1
all_paths = [[[0, 0, 0], [1, 1, 0]], [[1, 1, 200], [2, 2, 200]]]
path_lengths = [1.41, 1.41]
measured_traces = [[100, 200], [100, 140]]
config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-cell', 'use_corrected_positions': True, 'screening_distance':10 }
df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config)
assert len(df) == 2, "Expected two rows in DataFrame"
assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id"
assert list(df['Trace_foci_number']) == [1,0], "Wrong foci number"
assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2)
assert list(map(list, foci_pos_index)) == [[1],[]]
assert list(map(list, foci_absolute_intensity)) == [[200],[]]
assert trace_thresholds == [ 150+0.4*50, 120+0.4*50 ]
assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)]))
assert screened_foci_data == [[],[]]
|