Spaces:
Sleeping
Sleeping
import lxml.etree as ET | |
import gzip | |
import tifffile | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from PIL import Image, ImageDraw | |
import pandas as pd | |
def get_paths_from_traces_file(traces_file): | |
tree = ET.parse(traces_file) | |
root = tree.getroot() | |
all_paths = [] | |
path_lengths = [] | |
for path in root.findall('path'): | |
length=path.get('reallength') | |
path_points = [] | |
for point in path: | |
path_points.append((int(point.get('x')), int(point.get('y')), int(point.get('z')))) | |
all_paths.append(path_points) | |
path_lengths.append(length) | |
return all_paths, path_lengths | |
def visualise_ordering(points_list, dim): | |
rdim, cdim, _ = dim | |
vis = np.zeros((rdim, cdim, 3), dtype=np.uint8) | |
def get_col(i): | |
r = int(255 * i/len(points_list)) | |
g = 255 - r | |
return r, g, 0 | |
for n, p in enumerate(points_list): | |
c, r, _ = p | |
wr, wc = 5, 5 | |
vis[max(0,r-wr):min(rdim,r+wr),max(0,c-wc):min(cdim,c+wc)] = get_col(n) | |
return vis | |
col_map = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255), (0,255,255)] | |
def draw_paths(all_paths, foci_stack): | |
im = np.max(foci_stack, axis=0) | |
im = (im/np.max(im)*255).astype(np.uint8) | |
im = np.dstack((im,)*3) | |
im = Image.fromarray(im) #.convert('RGB') | |
draw = ImageDraw.Draw(im) | |
for i, (p, col) in enumerate(zip(all_paths, col_map)): | |
draw.line([(u[0], u[1]) for u in p], fill=col) | |
draw.text((p[0][0], p[0][1]), str(i+1), fill=col) | |
return im | |
# Sum of measure_stack over regin where mask==1 | |
def measure_from_mask(mask, measure_stack): | |
return np.sum(mask * measure_stack) | |
# Max of measure_stack over region where mask==1 | |
def max_from_mask(mask, measure_stack): | |
return np.max(mask * measure_stack) | |
# Translate mask to point p, treating makss near stack edges correctly | |
def make_mask_s(p, melem, measure_stack): | |
mask = melem | |
R = melem.shape[0] // 2 | |
r, c, z = p | |
m_data = np.zeros(melem.shape) | |
s = measure_stack.shape | |
o_1, o_2, o_3 = max(R-r, 0), max(R-c, 0), max(R-z,0) | |
e_1, e_2, e_3 = min(R-r+s[0], 2*R), min(R-c+s[1], 2*R), min(R-z+s[2], 2*R) | |
m_data[o_1:e_1,o_2:e_2,o_3:e_3] = measure_stack[max(r-R,0):min(r+R,s[0]),max(c-R,0):min(c+R,s[1]),max(z-R,0):min(z+R, s[2])] | |
return mask, m_data | |
# Measure the (mean/max) value of measure_stack about the point p, using | |
# the structuring element melem. op indicates the appropriate measurement (mean/max) | |
def measure_at_point(p, melem, measure_stack, op='mean'): | |
if op=='mean': | |
mask, m_data = make_mask_s(p, melem, measure_stack) | |
melem_size = np.sum(melem) | |
return float(measure_from_mask(mask, m_data) / melem_size) | |
else: | |
mask, m_data = make_mask_s(p, melem, measure_stack) | |
return float(max_from_mask(mask, m_data)) | |
# Generate spherical region | |
def make_sphere(R=5, z_scale_ratio=2.3): | |
x, y, z = np.ogrid[-R:R, -R:R, -R:R] | |
sphere = x**2 + y**2 + (z_scale_ratio * z)**2 < R**2 | |
return sphere | |
# Measure the values of measure_stack at each of the points of points_list in turn. | |
# Measurement is the mean / max (specified by op) on the spherical region about each point | |
def measure_all_with_sphere(points_list, measure_stack, op='mean'): | |
melem = make_sphere() | |
measure_func = lambda p: measure_at_point(p, melem, measure_stack, op) | |
return list(map(measure_func, points_list)) | |
# Measure fluorescence levels along ordered skeleton | |
def measure_chrom2(path, hei10): | |
# single chrom - structure containing skeleton (single_chrom.skel) and | |
# fluorecence levels (single_chrom.hei10) as Image3D objects (equivalent to ndarray) | |
# Returns list of coordinates in skeleton, the ordered path | |
vis = visualise_ordering(path, dim=hei10.shape) | |
measurements = measure_all_with_sphere(path, hei10, op='mean') | |
measurements_max = measure_all_with_sphere(path, hei10, op='max') | |
return vis, measurements, measurements_max | |
def extract_peaks(cell_id, all_paths, path_lengths, measured_traces): | |
n = len(all_paths) | |
#headers = ['Cell_ID', 'Trace', 'Trace_length(um)', 'detection_sphere_radius(um)', 'Foci_ID_threshold', 'Foci_per_trace'] | |
#for i in range(max_n): | |
# headers += [f'Foci{i}_relative_intensity', f'Foci_{i}_position(um)'] | |
data_dict = {} | |
data_dict['Cell_ID'] = [cell_id]*n | |
data_dict['Trace'] = range(1, n+1) | |
data_dict['Trace_length(um)'] = path_lengths | |
data_dict['Detection_sphere_radius(um)'] = [0.2]*n | |
data_dict['Foci_ID_threshold'] = [0.4]*n | |
return pd.DataFrame(data_dict) | |
def analyse_paths(cell_id, foci_file, traces_file): | |
foci_stack = tifffile.imread(foci_file) | |
all_paths, path_lengths = get_paths_from_traces_file(traces_file) | |
all_trace_vis = [] | |
all_m = [] | |
for p in all_paths: | |
vis, m, _ = measure_chrom2(p,foci_stack.transpose(2,1,0)) | |
all_trace_vis.append(vis) | |
all_m.append(m) | |
trace_overlay = draw_paths(all_paths, foci_stack) | |
fig, ax = plt.subplots(len(all_paths),1) | |
for i, m in enumerate(all_m): | |
ax[i].plot(m) | |
extracted_peaks = extract_peaks(cell_id, all_paths, path_lengths, all_m) | |
return trace_overlay, all_trace_vis, fig, extracted_peaks | |