File size: 1,306 Bytes
b06490a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gradio as gr
import pytesseract
import cv2
import re
from sympy import sympify

# Function to extract math problems from an image
def extract_text_from_image(image):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  # Convert image to grayscale
    text = pytesseract.image_to_string(gray)        # Perform OCR to extract text
    math_problems = re.findall(r'[\d+\-*/().]+', text)  # Filter for potential math expressions
    return math_problems

# Function to solve the extracted math problems
def solve_math_problem(problem):
    try:
        expression = sympify(problem)
        result = expression.evalf()
        return result
    except Exception as e:
        return f"Error: {e}"

# Main function to recognize and solve math problems from an image
def recognize_and_solve(image):
    problems = extract_text_from_image(image)
    solutions = [f"{p} = {solve_math_problem(p)}" for p in problems]
    return "\n".join(solutions) if solutions else "No math problems detected."

# Gradio interface
interface = gr.Interface(
    fn=recognize_and_solve,
    inputs="image",
    outputs="text",
    title="Math Problem Recognizer and Solver",
    description="Upload an image containing math problems, and this app will recognize and solve them."
)

# Launch the Gradio app
interface.launch()