File size: 1,450 Bytes
8d8525b
c138cbc
335f4a7
 
 
f79962c
8d8525b
c138cbc
 
 
8d8525b
c138cbc
f79962c
c138cbc
0e6877a
 
 
 
 
335f4a7
8d8525b
 
2e1b7f6
 
8d8525b
 
2e1b7f6
 
8d8525b
 
 
 
 
 
2e1b7f6
 
 
8d8525b
 
 
 
 
 
 
 
 
 
 
335f4a7
 
f79962c
 
35666dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from flask import Flask, request, Response, jsonify
from llama_cpp import Llama

app = Flask(__name__)

# Load the model
print("πŸ”„ Loading model...")
llm = Llama.from_pretrained(
    repo_id="bartowski/google_gemma-3-1b-it-GGUF",
    filename="google_gemma-3-1b-it-IQ4_XS.gguf",
    n_ctx=2048
)
print("βœ… Model loaded!")

@app.route("/")
def home():
    print("πŸ“’ Serving index.html")
    return render_template("index.html")


def generate_response(user_input):
    """Generator function to stream model output"""
    try:
        response = llm.create_chat_completion(
            messages=[{"role": "user", "content": user_input}],
            stream=True  # Enable streaming
        )

        for chunk in response:
            if "choices" in chunk and len(chunk["choices"]) > 0:
                token = chunk["choices"][0]["delta"].get("content", "")
                if token:
                    print(f"πŸ“ Token: {token}", flush=True)  # Debugging
                    yield token

    except Exception as e:
        print(f"❌ Error generating response: {e}")
        yield "[Error occurred]"


@app.route("/chat", methods=["POST"])
def chat():
    user_input = request.json.get("message", "")
    if not user_input:
        return jsonify({"error": "Empty input"}), 400

    return Response(generate_response(user_input), content_type="text/plain")


if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860, debug=True)