Spaces:
Sleeping
Sleeping
File size: 1,240 Bytes
2c6e2ab f470ace edcca00 2eb99f4 edcca00 eb4a125 96750f0 48a14b6 696fe3b 2eb99f4 b20cd0a a30f996 2eb99f4 f0c277c 99eae47 ced94c6 5fa4dd9 2eb99f4 238759c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import os
import gradio as gr
import subprocess
from transformers import AutoModel
from huggingface_hub import snapshot_download
MODELS_PATH = "./models"
HF_CACHE_DIR = "./hf_cache"
def download_model(repo_id, revision="main"):
return snapshot_download(repo_id=repo_id, revision=revision, local_dir=os.path.join(MODELS_PATH, repo_id), cache_dir=HF_CACHE_DIR)
model_dir_gl_en = download_model("proxectonos/Nos_MT-OpenNMT-gl-en", revision="main")
model_dir_en_gl = download_model("proxectonos/Nos_MT-OpenNMT-en-gl", revision="main")
def translate(input_text):
print(input_text)
command = f"onmt_translate -src {input_text} -model {os.path.join(MODELS_PATH, model_dir_en_gl)}/NOS-MT-OpenNMT-en-gl --output ./output_file.txt --replace_unk"
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = process.communicate()
if process.returncode != 0:
raise Exception(f"Error occurred: {stderr.decode().strip()}")
with open ('./output_file.txt','r') as f:
resultado= f.read()
# return stdout.decode().strip()
print resultado
return resultado
demo = gr.Interface(fn=translate, inputs="textbox", outputs="textbox")
demo.launch() |