import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline import torch # this model was loaded from https://hf.co/models model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") device = 0 if torch.cuda.is_available() else -1 LANGS = ["ace_Arab", "eng_Latn", "fra_Latn", "spa_Latn"] def translate(text, src_lang, tgt_lang): """ Translate the text from source lang to target lang """ translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang, max_length=400, device=device) result = translation_pipeline(text) return result[0]['translation_text'] demo = gr.Interface( fn=translate, inputs=[ gr.components.Textbox(label="Text"), gr.components.Dropdown(label="Source Language", choices=LANGS), gr.components.Dropdown(label="Target Language", choices=LANGS), ], outputs=["text"], examples=[["Building a translation demo with Gradio is so easy!", "eng_Latn", "spa_Latn"]], cache_examples=False, title="Translation Demo", description="This demo is a simplified version of the original [NLLB-Translator](https://huggingface.co/spaces/Narrativaai/NLLB-Translator) space" ) demo.launch()