Spaces:
Runtime error
Runtime error
File size: 18,018 Bytes
02cc20b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import os
from typing import List
import torch
from diffusers import StableDiffusionPipeline
from diffusers.pipelines.controlnet import MultiControlNetModel
from PIL import Image
from safetensors import safe_open
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from .attention_processor import LoRAFaceAttnProcessor
from .utils import is_torch2_available, get_generator
if is_torch2_available():
from .attention_processor import (
AttnProcessor2_0 as AttnProcessor,
)
else:
from .attention_processor import AttnProcessor
from .resampler import Resampler
class ImageProjModel(torch.nn.Module):
"""Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.generator = None
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class MLPProjModel(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
super().__init__()
self.proj = torch.nn.Sequential(
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
torch.nn.GELU(),
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
torch.nn.LayerNorm(cross_attention_dim)
)
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class FaceAdapterLora:
def __init__(self, sd_pipe, image_encoder_path, id_ckpt, device, num_tokens=4,torch_type=torch.float32):
self.device = device
self.image_encoder_path = image_encoder_path
self.id_ckpt = id_ckpt
self.num_tokens = num_tokens
self.torch_type = torch_type
self.pipe = sd_pipe.to(self.device)
self.set_face_adapter()
# load image encoder
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
self.device, dtype=self.torch_type
)
self.clip_image_processor = CLIPImageProcessor()
# image proj model
self.image_proj_model = self.init_proj()
self.load_face_adapter()
def init_proj(self):
image_proj_model = ImageProjModel(
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
clip_embeddings_dim=self.image_encoder.config.projection_dim,
clip_extra_context_tokens=self.num_tokens,
).to(self.device, dtype=self.torch_type)
return image_proj_model
def set_face_adapter(self):
unet = self.pipe.unet
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor().to(self.device, dtype=self.torch_type)
else:
attn_procs[name] = LoRAFaceAttnProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=128, num_tokens=self.num_tokens,
).to(self.device, dtype=self.torch_type)
unet.set_attn_processor(attn_procs)
def load_face_adapter(self):
state_dict = torch.load(self.id_ckpt, map_location="cpu")
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
image_proj_dict={}
face_adapter_proj={}
for k,v in state_dict.items():
if k.startswith("module.image_proj_model"):
image_proj_dict[k.replace("module.image_proj_model.", "")] = state_dict[k]
elif k.startswith("module.adapter_modules."):
face_adapter_proj[k.replace("module.adapter_modules.", "")] = state_dict[k]
elif k.startswith("image_proj_model"):
image_proj_dict[k.replace("image_proj_model.", "")] = state_dict[k]
elif k.startswith("adapter_modules."):
face_adapter_proj[k.replace("adapter_modules.", "")] = state_dict[k]
else:
print("ERROR!")
return
state_dict = {}
state_dict['image_proj'] = image_proj_dict
state_dict["face_adapter"] = face_adapter_proj
self.image_proj_model.load_state_dict(state_dict["image_proj"])
adapter_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
adapter_layers.load_state_dict(state_dict["face_adapter"],strict=False)
@torch.inference_mode()
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
if pil_image is not None:
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=self.torch_type)).image_embeds
else:
clip_image_embeds = clip_image_embeds.to(self.device, dtype=self.torch_type)
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
return image_prompt_embeds, uncond_image_prompt_embeds
# This scales the face-adapter face_hidden_states (attn output). attn_processor.scale: default 1.0.
# faceadapter/attention_processor.py:L283.
def set_attn_scale(self, attn_scale):
for attn_processor in self.pipe.unet.attn_processors.values():
if isinstance(attn_processor, LoRAFaceAttnProcessor):
attn_processor.scale = attn_scale
def generate(
self,
pil_image=None,
clip_image_embeds=None,
prompt=None,
negative_prompt=None,
attn_scale=1,
num_samples=4,
seed=None,
guidance_scale=7.5,
num_inference_steps=30,
**kwargs,
):
self.set_attn_scale(attn_scale)
if pil_image is not None:
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
else:
num_prompts = clip_image_embeds.size(0)
if prompt is None:
prompt = "best quality, high quality"
if negative_prompt is None:
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
pil_image=pil_image, clip_image_embeds=clip_image_embeds
)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
with torch.inference_mode():
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
prompt,
device=self.device,
num_images_per_prompt=num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
generator = get_generator(seed, self.device)
images = self.pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
**kwargs,
).images
return images
class FaceAdapterPlusForVideoLora(FaceAdapterLora):
def init_proj(self):
image_proj_model = Resampler(
dim=self.pipe.unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=self.num_tokens,
embedding_dim=self.image_encoder.config.hidden_size,
output_dim=self.pipe.unet.config.cross_attention_dim,
ff_mult=4,
).to(self.device, dtype=self.torch_type)
return image_proj_model
@torch.inference_mode()
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(self.device, dtype=self.torch_type)
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
uncond_clip_image_embeds = self.image_encoder(
torch.zeros_like(clip_image), output_hidden_states=True
).hidden_states[-2]
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds
def generate(
self,
pil_image=None,
init_image=None,
init_image_strength=1.,
clip_image_embeds=None,
prompt=None,
negative_prompt=None,
adaface_embeds=None,
adaface_scale=1.0,
attn_scale=1.0,
num_samples=1,
seed=None,
guidance_scale=4,
num_inference_steps=30,
adaface_anneal_steps=0,
width=512,
height=512,
video_length=16,
image_embed_scale=1,
controlnet_images: torch.FloatTensor = None,
controlnet_image_index: list = [0],
**kwargs,
):
self.set_attn_scale(attn_scale)
num_prompts=1
if prompt is None:
prompt = "best quality, high quality"
if negative_prompt is None:
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
num_prompt_img = len(pil_image)
total_image_prompt_embeds = 0
for i in range(num_prompt_img):
prompt_img = pil_image[i]
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
pil_image=prompt_img, clip_image_embeds=clip_image_embeds
)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
total_image_prompt_embeds += image_prompt_embeds
total_image_prompt_embeds /= num_prompt_img
image_prompt_embeds = total_image_prompt_embeds
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
with torch.inference_mode():
# if do_classifier_free_guidance,
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method.
# https://github.com/huggingface/diffusers/blob/70f8d4b488f03730ae3bc11d4d707bafe153d10d/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L469
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
prompt,
device=self.device,
num_videos_per_prompt=num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
if adaface_embeds is not None:
prompt_embeds0_ = prompt_embeds_
# self.torch_type == torch.float16. adaface_embeds is torch.float32.
prompt_embeds_ = adaface_embeds.repeat(num_samples, 1, 1).to(dtype=self.torch_type) * adaface_scale
# Scale down ID-Animator's face embeddings, so that they don't dominate the generation.
# Note to balance image_prompt_embeds with uncond_image_prompt_embeds after scaling.
image_prompt_embeds = image_prompt_embeds * image_embed_scale + uncond_image_prompt_embeds * (1 - image_embed_scale)
# We still need uncond_image_prompt_embeds, otherwise the output is blank.
prompt_embeds_end = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
prompt_embeds_begin = torch.cat([prompt_embeds0_, torch.zeros_like(image_prompt_embeds)], dim=1)
prompt_embeds = (prompt_embeds_begin, prompt_embeds_end, adaface_anneal_steps)
else:
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
# prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
generator = get_generator(seed, self.device)
video = self.pipe(
init_image=init_image,
init_image_strength=init_image_strength,
prompt = "",
prompt_embeds = prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
width = width,
height=height,
video_length = video_length,
controlnet_images = controlnet_images,
controlnet_image_index=controlnet_image_index,
**kwargs,
).videos
return video
def generate_video_edit(
self,
pil_image=None,
clip_image_embeds=None,
prompt=None,
negative_prompt=None,
attn_scale=1.0,
num_samples=1,
seed=None,
guidance_scale=7.5,
num_inference_steps=30,
width=512,
height=512,
video_length=16,
video_latents=None,
**kwargs,
):
self.set_attn_scale(attn_scale)
if pil_image is not None:
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
else:
num_prompts = clip_image_embeds.size(0)
if prompt is None:
prompt = "best quality, high quality"
if negative_prompt is None:
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
pil_image=pil_image, clip_image_embeds=clip_image_embeds
)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
with torch.inference_mode():
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
prompt,
device=self.device,
num_videos_per_prompt=num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
generator = get_generator(seed, self.device)
video = self.pipe.video_edit(
prompt = "",
prompt_embeds = prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
width = width,
height=height,
video_length = video_length,
latents=video_latents,
**kwargs,
).videos
return video |