Spaces:
Runtime error
Runtime error
File size: 6,718 Bytes
02cc20b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
from diffusers import AutoencoderKL, DDIMScheduler
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from animatediff.models.unet import UNet3DConditionModel
from omegaconf import OmegaConf
from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.utils.util import load_weights
from safetensors import safe_open
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
from faceadapter.face_adapter import FaceAdapterPlusForVideoLora
from adaface.adaface_wrapper import AdaFaceWrapper
def load_adaface(base_model_path, adaface_ckpt_path, device="cuda"):
# base_model_path is only used for initialization, not really used in the inference.
adaface = AdaFaceWrapper(pipeline_name="text2img", base_model_path=base_model_path,
adaface_ckpt_path=adaface_ckpt_path, device=device)
return adaface
def load_model(base_model_type="sar", adaface_base_model_type="sar",
adaface_ckpt_path=None, device="cuda"):
inference_config = "inference-v2.yaml"
sd_version = "animatediff/sd"
id_ckpt = "models/animator.ckpt"
image_encoder_path = "models/image_encoder"
base_model_type_to_path = {
"rv40": "models/realisticvision/realisticVisionV40_v40VAE.safetensors",
"rv60": "models/realisticvision/realisticVisionV60B1_v51VAE.safetensors",
"sd15": "models/stable-diffusion-v-1-5/v1-5-pruned.safetensors",
"sd15_adaface": "models/stable-diffusion-v-1-5/v1-5-dste8-vae.ckpt",
"toonyou": "models/toonyou/toonyou_beta6.safetensors",
"epv5": "models/epic_realism/epicrealism_pureEvolutionV5.safetensors",
"ar181": "models/absolutereality/absolutereality_v181.safetensors",
"ar16": "models/absolutereality/ar-v1-6.safetensors",
"sar": "models/sar/sar.safetensors",
}
base_model_path = base_model_type_to_path[base_model_type]
if adaface_base_model_type + "_adaface" in base_model_type_to_path:
adaface_base_model_path = base_model_type_to_path[adaface_base_model_type + "_adaface"]
else:
adaface_base_model_path = base_model_type_to_path[adaface_base_model_type]
motion_module_path="models/v3_sd15_mm.ckpt"
motion_lora_path = "models/v3_sd15_adapter.ckpt"
inference_config = OmegaConf.load(inference_config)
tokenizer = CLIPTokenizer.from_pretrained(sd_version, subfolder="tokenizer",torch_dtype=torch.float16,
)
text_encoder = CLIPTextModel.from_pretrained(sd_version, subfolder="text_encoder",torch_dtype=torch.float16,
).to(device=device)
vae = AutoencoderKL.from_pretrained(sd_version, subfolder="vae",torch_dtype=torch.float16,
).to(device=device)
unet = UNet3DConditionModel.from_pretrained_2d(sd_version, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs)
).to(device=device)
# unet.to(dtype=torch.float16) does not work on hf spaces.
unet = unet.half()
pipeline = AnimationPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
controlnet=None,
#beta_start=0.00085, beta_end=0.012, beta_schedule="linear",steps_offset=1
scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)
# scheduler=DPMSolverMultistepScheduler(**OmegaConf.to_container(inference_config.DPMSolver_scheduler_kwargs)
# scheduler=EulerAncestralDiscreteScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)
# scheduler=EulerAncestralDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="linear",steps_offset=1
),torch_dtype=torch.float16,
).to(device=device)
pipeline = load_weights(
pipeline,
# motion module
motion_module_path = motion_module_path,
motion_module_lora_configs = [],
# domain adapter
adapter_lora_path = motion_lora_path,
adapter_lora_scale = 1,
# image layers
dreambooth_model_path = None,
lora_model_path = "",
lora_alpha = 0.8
).to(device=device)
if base_model_path != "":
print(f"load dreambooth model from {base_model_path}")
dreambooth_state_dict = {}
with safe_open(base_model_path, framework="pt", device="cpu") as f:
for key in f.keys():
dreambooth_state_dict[key] = f.get_tensor(key)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, pipeline.vae.config)
# print(vae)
#vae ->to_q,to_k,to_v
# print(converted_vae_checkpoint)
convert_vae_keys = list(converted_vae_checkpoint.keys())
for key in convert_vae_keys:
if "encoder.mid_block.attentions" in key or "decoder.mid_block.attentions" in key:
new_key = None
if "key" in key:
new_key = key.replace("key","to_k")
elif "query" in key:
new_key = key.replace("query","to_q")
elif "value" in key:
new_key = key.replace("value","to_v")
elif "proj_attn" in key:
new_key = key.replace("proj_attn","to_out.0")
if new_key:
converted_vae_checkpoint[new_key] = converted_vae_checkpoint.pop(key)
pipeline.vae.load_state_dict(converted_vae_checkpoint)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, pipeline.unet.config)
pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict, dtype=torch.float16).to(device=device)
del dreambooth_state_dict
pipeline = pipeline.to(torch.float16)
id_animator = FaceAdapterPlusForVideoLora(pipeline, image_encoder_path, id_ckpt, num_tokens=16,
device=torch.device(device), torch_type=torch.float16)
if adaface_ckpt_path is not None:
adaface = load_adaface(adaface_base_model_path, #dreambooth_model_path,
adaface_ckpt_path, device)
else:
adaface = None
return id_animator, adaface
|