adaface-neurips
re-init
02cc20b
raw
history blame
10.2 kB
import os
import imageio
import numpy as np
from typing import Union
import cv2
import torch
import torchvision
import torch.distributed as dist
from safetensors import safe_open
from tqdm import tqdm
from einops import rearrange
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora, load_diffusers_lora
def zero_rank_print(s):
if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)
from typing import List
import PIL
def export_to_video(
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8
) -> str:
# if output_video_path is None:
# output_video_path = tempfile.NamedTemporaryFile(suffix=".webm").name
if isinstance(video_frames[0], PIL.Image.Image):
video_frames = [np.array(frame) for frame in video_frames]
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
# fourcc = cv2.VideoWriter_fourcc(*'VP90')
h, w, c = video_frames[0].shape
video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=fps, frameSize=(w, h))
for i in range(len(video_frames)):
img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
video_writer.write(img)
return output_video_path
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=9):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
# export_to_video(outputs, output_video_path=path, fps=fps)
imageio.mimsave(path, outputs, fps=fps)
# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
uncond_input = pipeline.tokenizer(
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
text_input = pipeline.tokenizer(
[prompt],
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
context = torch.cat([uncond_embeddings, text_embeddings])
return context
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
timestep, next_timestep = min(
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(latents, t, context, unet):
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
context = init_prompt(prompt, pipeline)
uncond_embeddings, cond_embeddings = context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in tqdm(range(num_inv_steps)):
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
latent = next_step(noise_pred, t, latent, ddim_scheduler)
all_latent.append(latent)
return all_latent
@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
return ddim_latents
def load_weights(
animation_pipeline,
# motion module
motion_module_path = "",
motion_module_lora_configs = [],
# domain adapter
adapter_lora_path = "",
adapter_lora_scale = 1.0,
# image layers
dreambooth_model_path = "",
lora_model_path = "",
lora_alpha = 0.8,
):
# motion module
unet_state_dict = {}
if motion_module_path != "":
print(f"load motion module from {motion_module_path}")
motion_module_state_dict = torch.load(motion_module_path, map_location="cpu")
motion_module_state_dict = motion_module_state_dict["state_dict"] if "state_dict" in motion_module_state_dict else motion_module_state_dict
unet_state_dict.update({name: param for name, param in motion_module_state_dict.items() if "motion_modules." in name})
unet_state_dict.pop("animatediff_config", "")
missing, unexpected = animation_pipeline.unet.load_state_dict(unet_state_dict, strict=False)
print("motion_module missing:",len(missing))
print("motion_module unexpe:",len(unexpected))
assert len(unexpected) == 0
del unet_state_dict
# base model
# if dreambooth_model_path != "":
# print(f"load dreambooth model from {dreambooth_model_path}")
# # if dreambooth_model_path.endswith(".safetensors"):
# # dreambooth_state_dict = {}
# # with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f:
# # for key in f.keys():
# # dreambooth_state_dict[key] = f.get_tensor(key)
# # elif dreambooth_model_path.endswith(".ckpt"):
# # dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu")
# # # 1. vae
# # converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config)
# # animation_pipeline.vae.load_state_dict(converted_vae_checkpoint)
# # # 2. unet
# # converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config)
# # animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
# # # 3. text_model
# # animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict)
# # del dreambooth_state_dict
# dreambooth_state_dict = {}
# with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f:
# for key in f.keys():
# dreambooth_state_dict[key] = f.get_tensor(key)
# converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config)
# # print(vae)
# #vae ->to_q,to_k,to_v
# # print(converted_vae_checkpoint)
# convert_vae_keys = list(converted_vae_checkpoint.keys())
# for key in convert_vae_keys:
# if "encoder.mid_block.attentions" in key or "decoder.mid_block.attentions" in key:
# new_key = None
# if "key" in key:
# new_key = key.replace("key","to_k")
# elif "query" in key:
# new_key = key.replace("query","to_q")
# elif "value" in key:
# new_key = key.replace("value","to_v")
# elif "proj_attn" in key:
# new_key = key.replace("proj_attn","to_out.0")
# if new_key:
# converted_vae_checkpoint[new_key] = converted_vae_checkpoint.pop(key)
# animation_pipeline.vae.load_state_dict(converted_vae_checkpoint)
# converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config)
# animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
# animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict)
# del dreambooth_state_dict
# lora layers
if lora_model_path != "":
print(f"load lora model from {lora_model_path}")
assert lora_model_path.endswith(".safetensors")
lora_state_dict = {}
with safe_open(lora_model_path, framework="pt", device="cpu") as f:
for key in f.keys():
lora_state_dict[key] = f.get_tensor(key)
animation_pipeline = convert_lora(animation_pipeline, lora_state_dict, alpha=lora_alpha)
del lora_state_dict
# domain adapter lora
if adapter_lora_path != "":
print(f"load domain lora from {adapter_lora_path}")
domain_lora_state_dict = torch.load(adapter_lora_path, map_location="cpu")
domain_lora_state_dict = domain_lora_state_dict["state_dict"] if "state_dict" in domain_lora_state_dict else domain_lora_state_dict
domain_lora_state_dict.pop("animatediff_config", "")
animation_pipeline = load_diffusers_lora(animation_pipeline, domain_lora_state_dict, alpha=adapter_lora_scale)
# motion module lora
for motion_module_lora_config in motion_module_lora_configs:
path, alpha = motion_module_lora_config["path"], motion_module_lora_config["alpha"]
print(f"load motion LoRA from {path}")
motion_lora_state_dict = torch.load(path, map_location="cpu")
motion_lora_state_dict = motion_lora_state_dict["state_dict"] if "state_dict" in motion_lora_state_dict else motion_lora_state_dict
motion_lora_state_dict.pop("animatediff_config", "")
animation_pipeline = load_diffusers_lora(animation_pipeline, motion_lora_state_dict, alpha)
return animation_pipeline