Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from transformers import CLIPTextModel | |
from diffusers import ( | |
StableDiffusionPipeline, | |
StableDiffusionImg2ImgPipeline, | |
UNet2DConditionModel, | |
DDIMScheduler, | |
AutoencoderKL, | |
) | |
from insightface.app import FaceAnalysis | |
from adaface.arc2face_models import CLIPTextModelWrapper | |
from adaface.util import get_arc2face_id_prompt_embs | |
import re, os | |
import sys | |
sys.modules['ldm'] = sys.modules['adaface'] | |
class AdaFaceWrapper(nn.Module): | |
def __init__(self, pipeline_name, base_model_path, adaface_ckpt_path, device, | |
subject_string='z', num_vectors=16, | |
num_inference_steps=50, negative_prompt=None, | |
use_840k_vae=False, use_ds_text_encoder=False, is_training=False): | |
''' | |
pipeline_name: "text2img" or "img2img" or None. If None, the unet and vae are | |
removed from the pipeline to release RAM. | |
''' | |
super().__init__() | |
self.pipeline_name = pipeline_name | |
self.base_model_path = base_model_path | |
self.adaface_ckpt_path = adaface_ckpt_path | |
self.use_840k_vae = use_840k_vae | |
self.use_ds_text_encoder = use_ds_text_encoder | |
self.subject_string = subject_string | |
self.num_vectors = num_vectors | |
self.num_inference_steps = num_inference_steps | |
self.device = device | |
self.is_training = is_training | |
self.initialize_pipeline() | |
self.extend_tokenizer_and_text_encoder() | |
if negative_prompt is None: | |
self.negative_prompt = \ | |
"flaws in the eyes, flaws in the face, lowres, non-HDRi, low quality, worst quality, artifacts, noise, text, watermark, glitch, " \ | |
"mutated, ugly, disfigured, hands, partially rendered objects, partially rendered eyes, deformed eyeballs, cross-eyed, blurry, " \ | |
"mutation, duplicate, out of frame, cropped, mutilated, bad anatomy, deformed, bad proportions, " \ | |
"nude, naked, nsfw, topless, bare breasts" | |
else: | |
self.negative_prompt = negative_prompt | |
def load_subj_basis_generator(self, adaface_ckpt_path): | |
ckpt = torch.load(adaface_ckpt_path, map_location='cpu') | |
string_to_subj_basis_generator_dict = ckpt["string_to_subj_basis_generator_dict"] | |
if self.subject_string not in string_to_subj_basis_generator_dict: | |
print(f"Subject '{self.subject_string}' not found in the embedding manager.") | |
breakpoint() | |
self.subj_basis_generator = string_to_subj_basis_generator_dict[self.subject_string] | |
# In the original ckpt, num_out_layers is 16 for layerwise embeddings. | |
# But we don't do layerwise embeddings here, so we set it to 1. | |
self.subj_basis_generator.num_out_layers = 1 | |
print(f"Loaded subject basis generator for '{self.subject_string}'.") | |
print(repr(self.subj_basis_generator)) | |
self.subj_basis_generator.to(self.device) | |
if self.is_training: | |
self.subj_basis_generator.train() | |
else: | |
self.subj_basis_generator.eval() | |
def initialize_pipeline(self): | |
self.load_subj_basis_generator(self.adaface_ckpt_path) | |
# arc2face_text_encoder maps the face analysis embedding to 16 face embeddings | |
# in the UNet image space. | |
arc2face_text_encoder = CLIPTextModelWrapper.from_pretrained( | |
'models/arc2face', subfolder="encoder", torch_dtype=torch.float16 | |
) | |
self.arc2face_text_encoder = arc2face_text_encoder.to(self.device) | |
if self.use_840k_vae: | |
# The 840000-step vae model is slightly better in face details than the original vae model. | |
# https://huggingface.co/stabilityai/sd-vae-ft-mse-original | |
vae = AutoencoderKL.from_single_file("models/diffusers/sd-vae-ft-mse-original/vae-ft-mse-840000-ema-pruned.ckpt", torch_dtype=torch.float16) | |
else: | |
vae = None | |
if self.use_ds_text_encoder: | |
# The dreamshaper v7 finetuned text encoder follows the prompt slightly better than the original text encoder. | |
# https://huggingface.co/Lykon/DreamShaper/tree/main/text_encoder | |
text_encoder = CLIPTextModel.from_pretrained("models/diffusers/ds_text_encoder", torch_dtype=torch.float16) | |
else: | |
text_encoder = None | |
remove_unet = False | |
if self.pipeline_name == "img2img": | |
PipelineClass = StableDiffusionImg2ImgPipeline | |
elif self.pipeline_name == "text2img": | |
PipelineClass = StableDiffusionPipeline | |
# pipeline_name is None means only use this instance to generate adaface embeddings, not to generate images. | |
elif self.pipeline_name is None: | |
PipelineClass = StableDiffusionPipeline | |
remove_unet = True | |
else: | |
raise ValueError(f"Unknown pipeline name: {self.pipeline_name}") | |
if os.path.isfile(self.base_model_path): | |
pipeline = PipelineClass.from_single_file( | |
self.base_model_path, | |
torch_dtype=torch.float16 | |
) | |
else: | |
pipeline = PipelineClass.from_pretrained( | |
self.base_model_path, | |
torch_dtype=torch.float16, | |
safety_checker=None | |
) | |
print(f"Loaded pipeline from {self.base_model_path}.") | |
if self.use_840k_vae: | |
pipeline.vae = vae | |
print("Replaced the VAE with the 840k-step VAE.") | |
if self.use_ds_text_encoder: | |
pipeline.text_encoder = text_encoder | |
print("Replaced the text encoder with the DreamShaper text encoder.") | |
if remove_unet: | |
# Remove unet and vae to release RAM. Only keep tokenizer and text_encoder. | |
pipeline.unet = None | |
pipeline.vae = None | |
print("Removed UNet and VAE from the pipeline.") | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
pipeline.scheduler = noise_scheduler | |
self.pipeline = pipeline.to(self.device) | |
# FaceAnalysis will try to find the ckpt in: models/insightface/models/antelopev2. | |
# Note there's a second "model" in the path. | |
self.face_app = FaceAnalysis(name='antelopev2', root='models/insightface', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
self.face_app.prepare(ctx_id=0, det_size=(512, 512)) | |
# Patch the missing tokenizer in the subj_basis_generator. | |
if not hasattr(self.subj_basis_generator, 'clip_tokenizer'): | |
self.subj_basis_generator.clip_tokenizer = self.pipeline.tokenizer | |
print("Patched the missing tokenizer in the subj_basis_generator.") | |
def extend_tokenizer_and_text_encoder(self): | |
if self.num_vectors < 1: | |
raise ValueError(f"num_vectors has to be larger or equal to 1, but is {self.num_vectors}") | |
tokenizer = self.pipeline.tokenizer | |
# Add z0, z1, z2, ..., z15. | |
self.placeholder_tokens = [] | |
for i in range(0, self.num_vectors): | |
self.placeholder_tokens.append(f"{self.subject_string}_{i}") | |
self.placeholder_tokens_str = " ".join(self.placeholder_tokens) | |
# Add the new tokens to the tokenizer. | |
num_added_tokens = tokenizer.add_tokens(self.placeholder_tokens) | |
if num_added_tokens != self.num_vectors: | |
raise ValueError( | |
f"The tokenizer already contains the token {self.subject_string}. Please pass a different" | |
" `subject_string` that is not already in the tokenizer.") | |
print(f"Added {num_added_tokens} tokens ({self.placeholder_tokens_str}) to the tokenizer.") | |
# placeholder_token_ids: [49408, ..., 49423]. | |
self.placeholder_token_ids = tokenizer.convert_tokens_to_ids(self.placeholder_tokens) | |
# print(self.placeholder_token_ids) | |
# Resize the token embeddings as we are adding new special tokens to the tokenizer | |
old_weight = self.pipeline.text_encoder.get_input_embeddings().weight | |
self.pipeline.text_encoder.resize_token_embeddings(len(tokenizer)) | |
new_weight = self.pipeline.text_encoder.get_input_embeddings().weight | |
print(f"Resized text encoder token embeddings from {old_weight.shape} to {new_weight.shape} on {new_weight.device}.") | |
# Extend pipeline.text_encoder with the adaface subject emeddings. | |
# subj_embs: [16, 768]. | |
def update_text_encoder_subj_embs(self, subj_embs): | |
# Initialise the newly added placeholder token with the embeddings of the initializer token | |
token_embeds = self.pipeline.text_encoder.get_input_embeddings().weight.data | |
with torch.no_grad(): | |
for i, token_id in enumerate(self.placeholder_token_ids): | |
token_embeds[token_id] = subj_embs[i] | |
print(f"Updated {len(self.placeholder_token_ids)} tokens ({self.placeholder_tokens_str}) in the text encoder.") | |
def update_prompt(self, prompt): | |
if prompt is None: | |
prompt = "" | |
# If the placeholder tokens are already in the prompt, then return the prompt as is. | |
if self.placeholder_tokens_str in prompt: | |
return prompt | |
# If the subject string 'z' is not in the prompt, then simply prepend the placeholder tokens to the prompt. | |
if re.search(r'\b' + self.subject_string + r'\b', prompt) is None: | |
print(f"Subject string '{self.subject_string}' not found in the prompt. Adding it.") | |
comp_prompt = self.placeholder_tokens_str + " " + prompt | |
else: | |
# Replace the subject string 'z' with the placeholder tokens. | |
comp_prompt = re.sub(r'\b' + self.subject_string + r'\b', self.placeholder_tokens_str, prompt) | |
return comp_prompt | |
# image_paths: a list of image paths. image_folder: the parent folder name. | |
def generate_adaface_embeddings(self, image_paths, image_folder=None, | |
pre_face_embs=None, gen_rand_face=False, | |
out_id_embs_scale=1., noise_level=0, update_text_encoder=True): | |
# faceid_embeds is a batch of extracted face analysis embeddings (BS * 512 = id_batch_size * 512). | |
# If extract_faceid_embeds is True, faceid_embeds is *the same* embedding repeated by id_batch_size times. | |
# Otherwise, faceid_embeds is a batch of random embeddings, each instance is different. | |
# The same applies to id_prompt_emb. | |
# faceid_embeds is in the face analysis embeddings. id_prompt_emb is in the image prompt space. | |
# Here id_batch_size = 1, so | |
# faceid_embeds: [1, 512]. NOT used later. | |
# id_prompt_emb: [1, 16, 768]. | |
# NOTE: Since return_core_id_embs is True, id_prompt_emb is only the 16 core ID embeddings. | |
# arc2face prompt template: "photo of a id person" | |
# ID embeddings start from "id person ...". So there are 3 template tokens before the 16 ID embeddings. | |
face_image_count, faceid_embeds, id_prompt_emb \ | |
= get_arc2face_id_prompt_embs(self.face_app, self.pipeline.tokenizer, self.arc2face_text_encoder, | |
extract_faceid_embeds=not gen_rand_face, | |
pre_face_embs=pre_face_embs, | |
# image_folder is passed only for logging purpose. | |
# image_paths contains the paths of the images. | |
image_folder=image_folder, image_paths=image_paths, | |
images_np=None, | |
id_batch_size=1, | |
device=self.device, | |
# input_max_length == 22: only keep the first 22 tokens, | |
# including 3 template tokens and 16 ID tokens, and BOS and EOS tokens. | |
# The results are indistinguishable from input_max_length=77. | |
input_max_length=22, | |
noise_level=noise_level, | |
return_core_id_embs=True, | |
gen_neg_prompt=False, | |
verbose=True) | |
if face_image_count == 0: | |
return None | |
# adaface_subj_embs: [1, 1, 16, 768]. | |
# adaface_prompt_embs: [1, 77, 768] (not used). | |
adaface_subj_embs, adaface_prompt_embs = \ | |
self.subj_basis_generator(id_prompt_emb, None, None, | |
out_id_embs_scale=out_id_embs_scale, | |
is_face=True, is_training=False, | |
adaface_prompt_embs_inf_type='full_half_pad') | |
# adaface_subj_embs: [16, 768] | |
adaface_subj_embs = adaface_subj_embs.squeeze() | |
if update_text_encoder: | |
self.update_text_encoder_subj_embs(adaface_subj_embs) | |
return adaface_subj_embs | |
def encode_prompt(self, prompt, negative_prompt=None, device=None, verbose=False): | |
if negative_prompt is None: | |
negative_prompt = self.negative_prompt | |
if device is None: | |
device = self.device | |
prompt = self.update_prompt(prompt) | |
if verbose: | |
print(f"Prompt: {prompt}") | |
# For some unknown reason, the text_encoder is still on CPU after self.pipeline.to(self.device). | |
# So we manually move it to GPU here. | |
self.pipeline.text_encoder.to(device) | |
# Compatible with older versions of diffusers. | |
if not hasattr(self.pipeline, "encode_prompt"): | |
# prompt_embeds_, negative_prompt_embeds_: [77, 768] -> [1, 77, 768]. | |
prompt_embeds_, negative_prompt_embeds_ = \ | |
self.pipeline._encode_prompt(prompt, device=device, num_images_per_prompt=1, | |
do_classifier_free_guidance=True, negative_prompt=negative_prompt) | |
prompt_embeds_ = prompt_embeds_.unsqueeze(0) | |
negative_prompt_embeds_ = negative_prompt_embeds_.unsqueeze(0) | |
else: | |
# prompt_embeds_, negative_prompt_embeds_: [1, 77, 768] | |
prompt_embeds_, negative_prompt_embeds_ = \ | |
self.pipeline.encode_prompt(prompt, device=device, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt) | |
return prompt_embeds_, negative_prompt_embeds_ | |
# ref_img_strength is used only in the img2img pipeline. | |
def forward(self, noise, prompt, negative_prompt=None, guidance_scale=4.0, | |
out_image_count=4, ref_img_strength=0.8, generator=None, verbose=False): | |
if negative_prompt is None: | |
negative_prompt = self.negative_prompt | |
# prompt_embeds_, negative_prompt_embeds_: [1, 77, 768] | |
prompt_embeds_, negative_prompt_embeds_ = self.encode_prompt(prompt, negative_prompt, device=self.device, verbose=verbose) | |
# Repeat the prompt embeddings for all images in the batch. | |
prompt_embeds_ = prompt_embeds_.repeat(out_image_count, 1, 1) | |
negative_prompt_embeds_ = negative_prompt_embeds_.repeat(out_image_count, 1, 1) | |
noise = noise.to(self.device).to(torch.float16) | |
# noise: [BS, 4, 64, 64] | |
# When the pipeline is text2img, strength is ignored. | |
images = self.pipeline(image=noise, | |
prompt_embeds=prompt_embeds_, | |
negative_prompt_embeds=negative_prompt_embeds_, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
strength=ref_img_strength, | |
generator=generator).images | |
# images: [BS, 3, 512, 512] | |
return images | |