Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
# add_noise_to_tensor() adds a fixed amount of noise to the tensor. | |
def add_noise_to_tensor(ts, noise_std, noise_std_is_relative=True, keep_norm=False, | |
std_dim=-1, norm_dim=-1): | |
if noise_std_is_relative: | |
ts_std_mean = ts.std(dim=std_dim).mean().detach() | |
noise_std *= ts_std_mean | |
noise = torch.randn_like(ts) * noise_std | |
if keep_norm: | |
orig_norm = ts.norm(dim=norm_dim, keepdim=True) | |
ts = ts + noise | |
new_norm = ts.norm(dim=norm_dim, keepdim=True).detach() | |
ts = ts * orig_norm / (new_norm + 1e-8) | |
else: | |
ts = ts + noise | |
return ts | |
# Revised from RevGrad, by removing the grad negation. | |
class ScaleGrad(torch.autograd.Function): | |
def forward(ctx, input_, alpha_, debug=False): | |
ctx.save_for_backward(alpha_, debug) | |
output = input_ | |
if debug: | |
print(f"input: {input_.abs().mean().item()}") | |
return output | |
def backward(ctx, grad_output): # pragma: no cover | |
# saved_tensors returns a tuple of tensors. | |
alpha_, debug = ctx.saved_tensors | |
if ctx.needs_input_grad[0]: | |
grad_output2 = grad_output * alpha_ | |
if debug: | |
print(f"grad_output2: {grad_output2.abs().mean().item()}") | |
else: | |
grad_output2 = None | |
return grad_output2, None, None | |
class GradientScaler(nn.Module): | |
def __init__(self, alpha=1., debug=False, *args, **kwargs): | |
""" | |
A gradient scaling layer. | |
This layer has no parameters, and simply scales the gradient in the backward pass. | |
""" | |
super().__init__(*args, **kwargs) | |
self._alpha = torch.tensor(alpha, requires_grad=False) | |
self._debug = torch.tensor(debug, requires_grad=False) | |
def forward(self, input_): | |
_debug = self._debug if hasattr(self, '_debug') else False | |
return ScaleGrad.apply(input_, self._alpha.to(input_.device), _debug) | |
def gen_gradient_scaler(alpha, debug=False): | |
if alpha == 1: | |
return nn.Identity() | |
if alpha > 0: | |
return GradientScaler(alpha, debug=debug) | |
else: | |
assert alpha == 0 | |
# Don't use lambda function here, otherwise the object can't be pickled. | |
return torch.detach | |
#@torch.autocast(device_type="cuda") | |
# In AdaFaceWrapper, input_max_length is 22. | |
def arc2face_forward_face_embs(tokenizer, arc2face_text_encoder, face_embs, | |
input_max_length=77, return_full_and_core_embs=True): | |
''' | |
arc2face_text_encoder: arc2face_models.py CLIPTextModelWrapper instance. | |
face_embs: (N, 512) normalized ArcFace embeddings. | |
return_full_and_core_embs: Return both the full prompt embeddings and the core embeddings. | |
If False, return only the core embeddings. | |
''' | |
# arcface_token_id: 1014 | |
arcface_token_id = tokenizer.encode("id", add_special_tokens=False)[0] | |
# This step should be quite fast, and there's no need to cache the input_ids. | |
input_ids = tokenizer( | |
"photo of a id person", | |
truncation=True, | |
padding="max_length", | |
max_length=input_max_length, #tokenizer.model_max_length, | |
return_tensors="pt", | |
).input_ids.to(face_embs.device) | |
# input_ids: [1, 77] or [3, 77] (during training). | |
input_ids = input_ids.repeat(len(face_embs), 1) | |
face_embs_dtype = face_embs.dtype | |
face_embs = face_embs.to(arc2face_text_encoder.dtype) | |
# face_embs_padded: [1, 512] -> [1, 768]. | |
face_embs_padded = F.pad(face_embs, (0, arc2face_text_encoder.config.hidden_size - face_embs.shape[-1]), "constant", 0) | |
# arc2face_text_encoder(input_ids=input_ids, ...) is called twice. The first is only to get the token embeddings (the shallowest mapping). | |
# The second call does the ordinary CLIP text encoding pass. | |
token_embs = arc2face_text_encoder(input_ids=input_ids, return_token_embs=True) | |
token_embs[input_ids==arcface_token_id] = face_embs_padded | |
prompt_embeds = arc2face_text_encoder( | |
input_ids=input_ids, | |
input_token_embs=token_embs, | |
return_token_embs=False | |
)[0] | |
# Restore the original dtype of prompt_embeds: float16 -> float32. | |
prompt_embeds = prompt_embeds.to(face_embs_dtype) | |
if return_full_and_core_embs: | |
# token 4: 'id' in "photo of a id person". | |
# 4:20 are the most important 16 embeddings that contain the subject's identity. | |
# [N, 77, 768] -> [N, 16, 768] | |
return prompt_embeds, prompt_embeds[:, 4:20] | |
else: | |
# [N, 16, 768] | |
return prompt_embeds[:, 4:20] | |
def get_b_core_e_embeddings(prompt_embeds, length=22): | |
b_core_e_embs = torch.cat([ prompt_embeds[:, :length], prompt_embeds[:, [-1]] ], dim=1) | |
return b_core_e_embs | |
# return_emb_types: a list of strings, each string is among ['full', 'core', 'full_zeroed_extra', 'b_core_e']. | |
def arc2face_inverse_face_prompt_embs(clip_tokenizer, inverse_text_encoder, face_prompt_embs, list_extra_words, | |
return_emb_types, pad_embeddings, hidden_state_layer_weights=None, | |
input_max_length=77, zs_extra_words_scale=0.5): | |
''' | |
inverse_text_encoder: arc2face_models.py CLIPTextModelWrapper instance with **custom weights**. | |
inverse_text_encoder is NOT the original arc2face text encoder, but retrained to do inverse mapping. | |
face_prompt_embs: (BS, 16, 768). Only the core embeddings, no paddings. | |
list_extra_words: [s_1, ..., s_BS], each s_i is a list of extra words to be added to the prompt. | |
return_full_and_core_embs: Return both the full prompt embeddings and the core embeddings. | |
If False, return only the core embeddings. | |
''' | |
if list_extra_words is not None: | |
if len(list_extra_words) != len(face_prompt_embs): | |
if len(face_prompt_embs) > 1: | |
print("Warn: list_extra_words has different length as face_prompt_embs.") | |
if len(list_extra_words) == 1: | |
list_extra_words = list_extra_words * len(face_prompt_embs) | |
else: | |
breakpoint() | |
else: | |
# len(face_prompt_embs) == 1, this occurs when same_subject_in_batch == True, e.g. in do_mix_prompt_distillation. | |
# But list_extra_words always corresponds to the actual batch size. So we only take the first element. | |
list_extra_words = list_extra_words[:1] | |
for extra_words in list_extra_words: | |
assert len(extra_words.split()) <= 2, "Each extra_words string should consist of at most 2 words." | |
# 16 ", " are placeholders for face_prompt_embs. | |
prompt_templates = [ "photo of a " + ", " * 16 + list_extra_words[i] for i in range(len(list_extra_words)) ] | |
else: | |
# 16 ", " are placeholders for face_prompt_embs. | |
# No extra words are added to the prompt. | |
prompt_templates = [ "photo of a " + ", " * 16 for _ in range(len(face_prompt_embs)) ] | |
# This step should be quite fast, and there's no need to cache the input_ids. | |
# input_ids: [BS, 77]. | |
input_ids = clip_tokenizer( | |
prompt_templates, | |
truncation=True, | |
padding="max_length", | |
max_length=input_max_length, | |
return_tensors="pt", | |
).input_ids.to(face_prompt_embs.device) | |
face_prompt_embs_dtype = face_prompt_embs.dtype | |
face_prompt_embs = face_prompt_embs.to(inverse_text_encoder.dtype) | |
# token_embs: [1, 77, 768]. This call is only to get the template token embeddings (the shallowest mapping). | |
token_embs = inverse_text_encoder(input_ids=input_ids, return_token_embs=True) | |
# token 4: first ", " in the template prompt. | |
# Replace embeddings of 16 placeholder ", " with face_prompt_embs. | |
token_embs[:, 4:20] = face_prompt_embs | |
# This call does the ordinary CLIP text encoding pass. | |
prompt_embeds = inverse_text_encoder( | |
input_ids=input_ids, | |
input_token_embs=token_embs, | |
hidden_state_layer_weights=hidden_state_layer_weights, | |
return_token_embs=False | |
)[0] | |
# Restore the original dtype of prompt_embeds: float16 -> float32. | |
prompt_embeds = prompt_embeds.to(face_prompt_embs_dtype) | |
# token 4: first ", " in the template prompt. | |
# 4:20 are the most important 16 embeddings that contain the subject's identity. | |
# 20:22 are embeddings of the (at most) two extra words. | |
# [N, 77, 768] -> [N, 16, 768] | |
core_prompt_embs = prompt_embeds[:, 4:20] | |
if list_extra_words is not None: | |
# [N, 16, 768] -> [N, 18, 768] | |
extra_words_embs = prompt_embeds[:, 20:22] * zs_extra_words_scale | |
core_prompt_embs = torch.cat([core_prompt_embs, extra_words_embs], dim=1) | |
return_prompts = [] | |
for emb_type in return_emb_types: | |
if emb_type == 'full': | |
return_prompts.append(prompt_embeds) | |
elif emb_type == 'full_half_pad': | |
prompt_embeds2 = prompt_embeds.clone() | |
PADS = prompt_embeds2.shape[1] - 23 | |
if PADS >= 2: | |
# Fill half of the remaining embeddings with pad embeddings. | |
prompt_embeds2[:, 22:22+PADS//2] = pad_embeddings[22:22+PADS//2] | |
return_prompts.append(prompt_embeds2) | |
elif emb_type == 'full_pad': | |
prompt_embeds2 = prompt_embeds.clone() | |
# Fill the 22nd to the second last embeddings with pad embeddings. | |
prompt_embeds2[:, 22:-1] = pad_embeddings[22:-1] | |
return_prompts.append(prompt_embeds2) | |
elif emb_type == 'core': | |
return_prompts.append(core_prompt_embs) | |
elif emb_type == 'full_zeroed_extra': | |
prompt_embeds2 = prompt_embeds.clone() | |
# Only add two pad embeddings. The remaining embeddings are set to 0. | |
# Make the positional embeddings align with the actual positions. | |
prompt_embeds2[:, 22:24] = pad_embeddings[22:24] | |
prompt_embeds2[:, 24:-1] = 0 | |
return_prompts.append(prompt_embeds2) | |
elif emb_type == 'b_core_e': | |
# The first 22 embeddings, plus the last EOS embedding. | |
b_core_e_embs = get_b_core_e_embeddings(prompt_embeds, length=22) | |
return_prompts.append(b_core_e_embs) | |
else: | |
breakpoint() | |
return return_prompts | |
# if pre_face_embs is None, generate random face embeddings [BS, 512]. | |
# image_folder is passed only for logging purpose. image_paths contains the paths of the images. | |
def get_arc2face_id_prompt_embs(face_app, clip_tokenizer, arc2face_text_encoder, | |
extract_faceid_embeds, pre_face_embs, | |
image_folder, image_paths, images_np, | |
id_batch_size, device, | |
input_max_length=77, noise_level=0.0, | |
return_core_id_embs=False, | |
gen_neg_prompt=False, verbose=False): | |
face_image_count = 0 | |
if extract_faceid_embeds: | |
faceid_embeds = [] | |
if image_paths is not None: | |
images_np = [] | |
for image_path in image_paths: | |
image_np = np.array(Image.open(image_path)) | |
images_np.append(image_np) | |
for i, image_np in enumerate(images_np): | |
image_obj = Image.fromarray(image_np).resize((512, 512), Image.NEAREST) | |
# Remove alpha channel if it exists. | |
if image_obj.mode == 'RGBA': | |
image_obj = image_obj.convert('RGB') | |
# This seems NOT a bug. The input image should be in BGR format, as per | |
# https://github.com/deepinsight/insightface/issues/524 | |
image_np = cv2.cvtColor(np.array(image_obj), cv2.COLOR_RGB2BGR) | |
image_np = np.array(image_obj) | |
face_infos = face_app.get(image_np) | |
if verbose and image_paths is not None: | |
print(image_paths[i], len(face_infos)) | |
# Assume all images belong to the same subject. Therefore, we can skip the images with no face detected. | |
if len(face_infos) == 0: | |
continue | |
# only use the maximum face | |
face_info = sorted(face_infos, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] | |
# Each faceid_embed: [1, 512] | |
faceid_embeds.append(torch.from_numpy(face_info.normed_embedding).unsqueeze(0)) | |
face_image_count += 1 | |
if verbose: | |
if image_folder is not None: | |
print(f"Extracted ID embeddings from {face_image_count} images in {image_folder}") | |
else: | |
print(f"Extracted ID embeddings from {face_image_count} images") | |
if len(faceid_embeds) == 0: | |
print("No face detected. Use a random face instead.") | |
faceid_embeds = torch.randn(id_batch_size, 512).to(device=device, dtype=torch.float16) | |
else: | |
# faceid_embeds: [10, 512] | |
faceid_embeds = torch.cat(faceid_embeds, dim=0) | |
# faceid_embeds: [10, 512] -> [1, 512]. | |
# and the resulted prompt embeddings are the same. | |
faceid_embeds = faceid_embeds.mean(dim=0, keepdim=True).to(device=device, dtype=torch.float16) | |
else: | |
# Random face embeddings. faceid_embeds: [BS, 512]. | |
if pre_face_embs is None: | |
faceid_embeds = torch.randn(id_batch_size, 512) | |
else: | |
faceid_embeds = pre_face_embs | |
if pre_face_embs.shape[0] == 1: | |
faceid_embeds = faceid_embeds.repeat(id_batch_size, 1) | |
faceid_embeds = faceid_embeds.to(device=device, dtype=torch.float16) | |
if noise_level > 0: | |
# If id_batch_size > 1, after adding noises, the id_batch_size embeddings will be different. | |
faceid_embeds = add_noise_to_tensor(faceid_embeds, noise_level, noise_std_is_relative=True, keep_norm=True) | |
faceid_embeds = F.normalize(faceid_embeds, p=2, dim=-1) | |
# arc2face_pos_prompt_emb, arc2face_neg_prompt_emb: [BS, 77, 768] | |
with torch.no_grad(): | |
arc2face_pos_prompt_emb, arc2face_pos_core_prompt_emb = \ | |
arc2face_forward_face_embs(clip_tokenizer, arc2face_text_encoder, | |
faceid_embeds, input_max_length=input_max_length, | |
return_full_and_core_embs=True) | |
if return_core_id_embs: | |
arc2face_pos_prompt_emb = arc2face_pos_core_prompt_emb | |
# If extract_faceid_embeds, we assume all images are from the same subject, and the batch dim of faceid_embeds is 1. | |
# So we need to repeat faceid_embeds. | |
if extract_faceid_embeds: | |
faceid_embeds = faceid_embeds.repeat(id_batch_size, 1) | |
arc2face_pos_prompt_emb = arc2face_pos_prompt_emb.repeat(id_batch_size, 1, 1) | |
if gen_neg_prompt: | |
with torch.no_grad(): | |
arc2face_neg_prompt_emb, arc2face_neg_core_prompt_emb = \ | |
arc2face_forward_face_embs(clip_tokenizer, arc2face_text_encoder, | |
torch.zeros_like(faceid_embeds), | |
input_max_length=input_max_length, | |
return_full_and_core_embs=True) | |
if return_core_id_embs: | |
arc2face_neg_prompt_emb = arc2face_neg_core_prompt_emb | |
#if extract_faceid_embeds: | |
# arc2face_neg_prompt_emb = arc2face_neg_prompt_emb.repeat(id_batch_size, 1, 1) | |
return face_image_count, faceid_embeds, arc2face_pos_prompt_emb, arc2face_neg_prompt_emb | |
else: | |
return face_image_count, faceid_embeds, arc2face_pos_prompt_emb | |