adaface-neurips
add link to adaface, various improvements
b0b5a77
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from PIL import Image
import cv2
# add_noise_to_tensor() adds a fixed amount of noise to the tensor.
def add_noise_to_tensor(ts, noise_std, noise_std_is_relative=True, keep_norm=False,
std_dim=-1, norm_dim=-1):
if noise_std_is_relative:
ts_std_mean = ts.std(dim=std_dim).mean().detach()
noise_std *= ts_std_mean
noise = torch.randn_like(ts) * noise_std
if keep_norm:
orig_norm = ts.norm(dim=norm_dim, keepdim=True)
ts = ts + noise
new_norm = ts.norm(dim=norm_dim, keepdim=True).detach()
ts = ts * orig_norm / (new_norm + 1e-8)
else:
ts = ts + noise
return ts
# Revised from RevGrad, by removing the grad negation.
class ScaleGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, input_, alpha_, debug=False):
ctx.save_for_backward(alpha_, debug)
output = input_
if debug:
print(f"input: {input_.abs().mean().item()}")
return output
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
# saved_tensors returns a tuple of tensors.
alpha_, debug = ctx.saved_tensors
if ctx.needs_input_grad[0]:
grad_output2 = grad_output * alpha_
if debug:
print(f"grad_output2: {grad_output2.abs().mean().item()}")
else:
grad_output2 = None
return grad_output2, None, None
class GradientScaler(nn.Module):
def __init__(self, alpha=1., debug=False, *args, **kwargs):
"""
A gradient scaling layer.
This layer has no parameters, and simply scales the gradient in the backward pass.
"""
super().__init__(*args, **kwargs)
self._alpha = torch.tensor(alpha, requires_grad=False)
self._debug = torch.tensor(debug, requires_grad=False)
def forward(self, input_):
_debug = self._debug if hasattr(self, '_debug') else False
return ScaleGrad.apply(input_, self._alpha.to(input_.device), _debug)
def gen_gradient_scaler(alpha, debug=False):
if alpha == 1:
return nn.Identity()
if alpha > 0:
return GradientScaler(alpha, debug=debug)
else:
assert alpha == 0
# Don't use lambda function here, otherwise the object can't be pickled.
return torch.detach
#@torch.autocast(device_type="cuda")
# In AdaFaceWrapper, input_max_length is 22.
def arc2face_forward_face_embs(tokenizer, arc2face_text_encoder, face_embs,
input_max_length=77, return_full_and_core_embs=True):
'''
arc2face_text_encoder: arc2face_models.py CLIPTextModelWrapper instance.
face_embs: (N, 512) normalized ArcFace embeddings.
return_full_and_core_embs: Return both the full prompt embeddings and the core embeddings.
If False, return only the core embeddings.
'''
# arcface_token_id: 1014
arcface_token_id = tokenizer.encode("id", add_special_tokens=False)[0]
# This step should be quite fast, and there's no need to cache the input_ids.
input_ids = tokenizer(
"photo of a id person",
truncation=True,
padding="max_length",
max_length=input_max_length, #tokenizer.model_max_length,
return_tensors="pt",
).input_ids.to(face_embs.device)
# input_ids: [1, 77] or [3, 77] (during training).
input_ids = input_ids.repeat(len(face_embs), 1)
face_embs_dtype = face_embs.dtype
face_embs = face_embs.to(arc2face_text_encoder.dtype)
# face_embs_padded: [1, 512] -> [1, 768].
face_embs_padded = F.pad(face_embs, (0, arc2face_text_encoder.config.hidden_size - face_embs.shape[-1]), "constant", 0)
# arc2face_text_encoder(input_ids=input_ids, ...) is called twice. The first is only to get the token embeddings (the shallowest mapping).
# The second call does the ordinary CLIP text encoding pass.
token_embs = arc2face_text_encoder(input_ids=input_ids, return_token_embs=True)
token_embs[input_ids==arcface_token_id] = face_embs_padded
prompt_embeds = arc2face_text_encoder(
input_ids=input_ids,
input_token_embs=token_embs,
return_token_embs=False
)[0]
# Restore the original dtype of prompt_embeds: float16 -> float32.
prompt_embeds = prompt_embeds.to(face_embs_dtype)
if return_full_and_core_embs:
# token 4: 'id' in "photo of a id person".
# 4:20 are the most important 16 embeddings that contain the subject's identity.
# [N, 77, 768] -> [N, 16, 768]
return prompt_embeds, prompt_embeds[:, 4:20]
else:
# [N, 16, 768]
return prompt_embeds[:, 4:20]
def get_b_core_e_embeddings(prompt_embeds, length=22):
b_core_e_embs = torch.cat([ prompt_embeds[:, :length], prompt_embeds[:, [-1]] ], dim=1)
return b_core_e_embs
# return_emb_types: a list of strings, each string is among ['full', 'core', 'full_zeroed_extra', 'b_core_e'].
def arc2face_inverse_face_prompt_embs(clip_tokenizer, inverse_text_encoder, face_prompt_embs, list_extra_words,
return_emb_types, pad_embeddings, hidden_state_layer_weights=None,
input_max_length=77, zs_extra_words_scale=0.5):
'''
inverse_text_encoder: arc2face_models.py CLIPTextModelWrapper instance with **custom weights**.
inverse_text_encoder is NOT the original arc2face text encoder, but retrained to do inverse mapping.
face_prompt_embs: (BS, 16, 768). Only the core embeddings, no paddings.
list_extra_words: [s_1, ..., s_BS], each s_i is a list of extra words to be added to the prompt.
return_full_and_core_embs: Return both the full prompt embeddings and the core embeddings.
If False, return only the core embeddings.
'''
if list_extra_words is not None:
if len(list_extra_words) != len(face_prompt_embs):
if len(face_prompt_embs) > 1:
print("Warn: list_extra_words has different length as face_prompt_embs.")
if len(list_extra_words) == 1:
list_extra_words = list_extra_words * len(face_prompt_embs)
else:
breakpoint()
else:
# len(face_prompt_embs) == 1, this occurs when same_subject_in_batch == True, e.g. in do_mix_prompt_distillation.
# But list_extra_words always corresponds to the actual batch size. So we only take the first element.
list_extra_words = list_extra_words[:1]
for extra_words in list_extra_words:
assert len(extra_words.split()) <= 2, "Each extra_words string should consist of at most 2 words."
# 16 ", " are placeholders for face_prompt_embs.
prompt_templates = [ "photo of a " + ", " * 16 + list_extra_words[i] for i in range(len(list_extra_words)) ]
else:
# 16 ", " are placeholders for face_prompt_embs.
# No extra words are added to the prompt.
prompt_templates = [ "photo of a " + ", " * 16 for _ in range(len(face_prompt_embs)) ]
# This step should be quite fast, and there's no need to cache the input_ids.
# input_ids: [BS, 77].
input_ids = clip_tokenizer(
prompt_templates,
truncation=True,
padding="max_length",
max_length=input_max_length,
return_tensors="pt",
).input_ids.to(face_prompt_embs.device)
face_prompt_embs_dtype = face_prompt_embs.dtype
face_prompt_embs = face_prompt_embs.to(inverse_text_encoder.dtype)
# token_embs: [1, 77, 768]. This call is only to get the template token embeddings (the shallowest mapping).
token_embs = inverse_text_encoder(input_ids=input_ids, return_token_embs=True)
# token 4: first ", " in the template prompt.
# Replace embeddings of 16 placeholder ", " with face_prompt_embs.
token_embs[:, 4:20] = face_prompt_embs
# This call does the ordinary CLIP text encoding pass.
prompt_embeds = inverse_text_encoder(
input_ids=input_ids,
input_token_embs=token_embs,
hidden_state_layer_weights=hidden_state_layer_weights,
return_token_embs=False
)[0]
# Restore the original dtype of prompt_embeds: float16 -> float32.
prompt_embeds = prompt_embeds.to(face_prompt_embs_dtype)
# token 4: first ", " in the template prompt.
# 4:20 are the most important 16 embeddings that contain the subject's identity.
# 20:22 are embeddings of the (at most) two extra words.
# [N, 77, 768] -> [N, 16, 768]
core_prompt_embs = prompt_embeds[:, 4:20]
if list_extra_words is not None:
# [N, 16, 768] -> [N, 18, 768]
extra_words_embs = prompt_embeds[:, 20:22] * zs_extra_words_scale
core_prompt_embs = torch.cat([core_prompt_embs, extra_words_embs], dim=1)
return_prompts = []
for emb_type in return_emb_types:
if emb_type == 'full':
return_prompts.append(prompt_embeds)
elif emb_type == 'full_half_pad':
prompt_embeds2 = prompt_embeds.clone()
PADS = prompt_embeds2.shape[1] - 23
if PADS >= 2:
# Fill half of the remaining embeddings with pad embeddings.
prompt_embeds2[:, 22:22+PADS//2] = pad_embeddings[22:22+PADS//2]
return_prompts.append(prompt_embeds2)
elif emb_type == 'full_pad':
prompt_embeds2 = prompt_embeds.clone()
# Fill the 22nd to the second last embeddings with pad embeddings.
prompt_embeds2[:, 22:-1] = pad_embeddings[22:-1]
return_prompts.append(prompt_embeds2)
elif emb_type == 'core':
return_prompts.append(core_prompt_embs)
elif emb_type == 'full_zeroed_extra':
prompt_embeds2 = prompt_embeds.clone()
# Only add two pad embeddings. The remaining embeddings are set to 0.
# Make the positional embeddings align with the actual positions.
prompt_embeds2[:, 22:24] = pad_embeddings[22:24]
prompt_embeds2[:, 24:-1] = 0
return_prompts.append(prompt_embeds2)
elif emb_type == 'b_core_e':
# The first 22 embeddings, plus the last EOS embedding.
b_core_e_embs = get_b_core_e_embeddings(prompt_embeds, length=22)
return_prompts.append(b_core_e_embs)
else:
breakpoint()
return return_prompts
# if pre_face_embs is None, generate random face embeddings [BS, 512].
# image_folder is passed only for logging purpose. image_paths contains the paths of the images.
def get_arc2face_id_prompt_embs(face_app, clip_tokenizer, arc2face_text_encoder,
extract_faceid_embeds, pre_face_embs,
image_folder, image_paths, images_np,
id_batch_size, device,
input_max_length=77, noise_level=0.0,
return_core_id_embs=False,
gen_neg_prompt=False, verbose=False):
face_image_count = 0
if extract_faceid_embeds:
faceid_embeds = []
if image_paths is not None:
images_np = []
for image_path in image_paths:
image_np = np.array(Image.open(image_path))
images_np.append(image_np)
for i, image_np in enumerate(images_np):
image_obj = Image.fromarray(image_np).resize((512, 512), Image.NEAREST)
# Remove alpha channel if it exists.
if image_obj.mode == 'RGBA':
image_obj = image_obj.convert('RGB')
# This seems NOT a bug. The input image should be in BGR format, as per
# https://github.com/deepinsight/insightface/issues/524
image_np = cv2.cvtColor(np.array(image_obj), cv2.COLOR_RGB2BGR)
image_np = np.array(image_obj)
face_infos = face_app.get(image_np)
if verbose and image_paths is not None:
print(image_paths[i], len(face_infos))
# Assume all images belong to the same subject. Therefore, we can skip the images with no face detected.
if len(face_infos) == 0:
continue
# only use the maximum face
face_info = sorted(face_infos, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1]
# Each faceid_embed: [1, 512]
faceid_embeds.append(torch.from_numpy(face_info.normed_embedding).unsqueeze(0))
face_image_count += 1
if verbose:
if image_folder is not None:
print(f"Extracted ID embeddings from {face_image_count} images in {image_folder}")
else:
print(f"Extracted ID embeddings from {face_image_count} images")
if len(faceid_embeds) == 0:
print("No face detected. Use a random face instead.")
faceid_embeds = torch.randn(id_batch_size, 512).to(device=device, dtype=torch.float16)
else:
# faceid_embeds: [10, 512]
faceid_embeds = torch.cat(faceid_embeds, dim=0)
# faceid_embeds: [10, 512] -> [1, 512].
# and the resulted prompt embeddings are the same.
faceid_embeds = faceid_embeds.mean(dim=0, keepdim=True).to(device=device, dtype=torch.float16)
else:
# Random face embeddings. faceid_embeds: [BS, 512].
if pre_face_embs is None:
faceid_embeds = torch.randn(id_batch_size, 512)
else:
faceid_embeds = pre_face_embs
if pre_face_embs.shape[0] == 1:
faceid_embeds = faceid_embeds.repeat(id_batch_size, 1)
faceid_embeds = faceid_embeds.to(device=device, dtype=torch.float16)
if noise_level > 0:
# If id_batch_size > 1, after adding noises, the id_batch_size embeddings will be different.
faceid_embeds = add_noise_to_tensor(faceid_embeds, noise_level, noise_std_is_relative=True, keep_norm=True)
faceid_embeds = F.normalize(faceid_embeds, p=2, dim=-1)
# arc2face_pos_prompt_emb, arc2face_neg_prompt_emb: [BS, 77, 768]
with torch.no_grad():
arc2face_pos_prompt_emb, arc2face_pos_core_prompt_emb = \
arc2face_forward_face_embs(clip_tokenizer, arc2face_text_encoder,
faceid_embeds, input_max_length=input_max_length,
return_full_and_core_embs=True)
if return_core_id_embs:
arc2face_pos_prompt_emb = arc2face_pos_core_prompt_emb
# If extract_faceid_embeds, we assume all images are from the same subject, and the batch dim of faceid_embeds is 1.
# So we need to repeat faceid_embeds.
if extract_faceid_embeds:
faceid_embeds = faceid_embeds.repeat(id_batch_size, 1)
arc2face_pos_prompt_emb = arc2face_pos_prompt_emb.repeat(id_batch_size, 1, 1)
if gen_neg_prompt:
with torch.no_grad():
arc2face_neg_prompt_emb, arc2face_neg_core_prompt_emb = \
arc2face_forward_face_embs(clip_tokenizer, arc2face_text_encoder,
torch.zeros_like(faceid_embeds),
input_max_length=input_max_length,
return_full_and_core_embs=True)
if return_core_id_embs:
arc2face_neg_prompt_emb = arc2face_neg_core_prompt_emb
#if extract_faceid_embeds:
# arc2face_neg_prompt_emb = arc2face_neg_prompt_emb.repeat(id_batch_size, 1, 1)
return face_image_count, faceid_embeds, arc2face_pos_prompt_emb, arc2face_neg_prompt_emb
else:
return face_image_count, faceid_embeds, arc2face_pos_prompt_emb