Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Conversion script for the Stable Diffusion checkpoints.""" | |
import re | |
from io import BytesIO | |
from typing import Optional | |
import requests | |
import torch | |
from transformers import ( | |
AutoFeatureExtractor, | |
BertTokenizerFast, | |
CLIPImageProcessor, | |
CLIPTextModel, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
CLIPVisionConfig, | |
CLIPVisionModelWithProjection, | |
) | |
from diffusers.models import ( | |
AutoencoderKL, | |
PriorTransformer, | |
UNet2DConditionModel, | |
) | |
from diffusers.schedulers import ( | |
DDIMScheduler, | |
DDPMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
HeunDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
UnCLIPScheduler, | |
) | |
from diffusers.utils.import_utils import BACKENDS_MAPPING | |
def shave_segments(path, n_shave_prefix_segments=1): | |
""" | |
Removes segments. Positive values shave the first segments, negative shave the last segments. | |
""" | |
if n_shave_prefix_segments >= 0: | |
return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
else: | |
return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item.replace("in_layers.0", "norm1") | |
new_item = new_item.replace("in_layers.2", "conv1") | |
new_item = new_item.replace("out_layers.0", "norm2") | |
new_item = new_item.replace("out_layers.3", "conv2") | |
new_item = new_item.replace("emb_layers.1", "time_emb_proj") | |
new_item = new_item.replace("skip_connection", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("nin_shortcut", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
# new_item = new_item.replace('norm.weight', 'group_norm.weight') | |
# new_item = new_item.replace('norm.bias', 'group_norm.bias') | |
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') | |
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') | |
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("norm.weight", "group_norm.weight") | |
new_item = new_item.replace("norm.bias", "group_norm.bias") | |
new_item = new_item.replace("q.weight", "query.weight") | |
new_item = new_item.replace("q.bias", "query.bias") | |
new_item = new_item.replace("k.weight", "key.weight") | |
new_item = new_item.replace("k.bias", "key.bias") | |
new_item = new_item.replace("v.weight", "value.weight") | |
new_item = new_item.replace("v.bias", "value.bias") | |
new_item = new_item.replace("proj_out.weight", "proj_attn.weight") | |
new_item = new_item.replace("proj_out.bias", "proj_attn.bias") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def assign_to_checkpoint( | |
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None | |
): | |
""" | |
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits | |
attention layers, and takes into account additional replacements that may arise. | |
Assigns the weights to the new checkpoint. | |
""" | |
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
# Splits the attention layers into three variables. | |
if attention_paths_to_split is not None: | |
for path, path_map in attention_paths_to_split.items(): | |
old_tensor = old_checkpoint[path] | |
channels = old_tensor.shape[0] // 3 | |
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | |
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) | |
query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
checkpoint[path_map["query"]] = query.reshape(target_shape) | |
checkpoint[path_map["key"]] = key.reshape(target_shape) | |
checkpoint[path_map["value"]] = value.reshape(target_shape) | |
for path in paths: | |
new_path = path["new"] | |
# These have already been assigned | |
if attention_paths_to_split is not None and new_path in attention_paths_to_split: | |
continue | |
# Global renaming happens here | |
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | |
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | |
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | |
if additional_replacements is not None: | |
for replacement in additional_replacements: | |
new_path = new_path.replace(replacement["old"], replacement["new"]) | |
# proj_attn.weight has to be converted from conv 1D to linear | |
if "proj_attn.weight" in new_path: | |
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | |
else: | |
checkpoint[new_path] = old_checkpoint[path["old"]] | |
def conv_attn_to_linear(checkpoint): | |
keys = list(checkpoint.keys()) | |
attn_keys = ["query.weight", "key.weight", "value.weight"] | |
for key in keys: | |
if ".".join(key.split(".")[-2:]) in attn_keys: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
elif "proj_attn.weight" in key: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0] | |
def create_unet_diffusers_config(original_config, image_size: int, controlnet=False): | |
""" | |
Creates a config for the diffusers based on the config of the LDM model. | |
""" | |
if controlnet: | |
unet_params = original_config.model.params.control_stage_config.params | |
else: | |
unet_params = original_config.model.params.unet_config.params | |
vae_params = original_config.model.params.first_stage_config.params.ddconfig | |
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] | |
down_block_types = [] | |
resolution = 1 | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D" | |
down_block_types.append(block_type) | |
if i != len(block_out_channels) - 1: | |
resolution *= 2 | |
up_block_types = [] | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D" | |
up_block_types.append(block_type) | |
resolution //= 2 | |
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1) | |
head_dim = unet_params.num_heads if "num_heads" in unet_params else None | |
use_linear_projection = ( | |
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False | |
) | |
if use_linear_projection: | |
# stable diffusion 2-base-512 and 2-768 | |
if head_dim is None: | |
head_dim = [5, 10, 20, 20] | |
class_embed_type = None | |
projection_class_embeddings_input_dim = None | |
if "num_classes" in unet_params: | |
if unet_params.num_classes == "sequential": | |
class_embed_type = "projection" | |
assert "adm_in_channels" in unet_params | |
projection_class_embeddings_input_dim = unet_params.adm_in_channels | |
else: | |
raise NotImplementedError(f"Unknown conditional unet num_classes config: {unet_params.num_classes}") | |
config = { | |
"sample_size": image_size // vae_scale_factor, | |
"in_channels": unet_params.in_channels, | |
"down_block_types": tuple(down_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"layers_per_block": unet_params.num_res_blocks, | |
"cross_attention_dim": unet_params.context_dim, | |
"attention_head_dim": head_dim, | |
"use_linear_projection": use_linear_projection, | |
"class_embed_type": class_embed_type, | |
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, | |
} | |
if not controlnet: | |
config["out_channels"] = unet_params.out_channels | |
config["up_block_types"] = tuple(up_block_types) | |
return config | |
def create_vae_diffusers_config(original_config, image_size: int): | |
""" | |
Creates a config for the diffusers based on the config of the LDM model. | |
""" | |
vae_params = original_config.model.params.first_stage_config.params.ddconfig | |
_ = original_config.model.params.first_stage_config.params.embed_dim | |
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] | |
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
config = { | |
"sample_size": image_size, | |
"in_channels": vae_params.in_channels, | |
"out_channels": vae_params.out_ch, | |
"down_block_types": tuple(down_block_types), | |
"up_block_types": tuple(up_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"latent_channels": vae_params.z_channels, | |
"layers_per_block": vae_params.num_res_blocks, | |
} | |
return config | |
def create_diffusers_schedular(original_config): | |
schedular = DDIMScheduler( | |
num_train_timesteps=original_config.model.params.timesteps, | |
beta_start=original_config.model.params.linear_start, | |
beta_end=original_config.model.params.linear_end, | |
beta_schedule="scaled_linear", | |
) | |
return schedular | |
def create_ldm_bert_config(original_config): | |
bert_params = original_config.model.parms.cond_stage_config.params | |
config = LDMBertConfig( | |
d_model=bert_params.n_embed, | |
encoder_layers=bert_params.n_layer, | |
encoder_ffn_dim=bert_params.n_embed * 4, | |
) | |
return config | |
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False, controlnet=False): | |
""" | |
Takes a state dict and a config, and returns a converted checkpoint. | |
""" | |
# extract state_dict for UNet | |
unet_state_dict = {} | |
keys = list(checkpoint.keys()) | |
if controlnet: | |
unet_key = "control_model." | |
else: | |
unet_key = "model.diffusion_model." | |
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA | |
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: | |
print(f"Checkpoint {path} has both EMA and non-EMA weights.") | |
print( | |
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" | |
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith("model.diffusion_model"): | |
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) | |
else: | |
if sum(k.startswith("model_ema") for k in keys) > 100: | |
print( | |
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" | |
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith(unet_key): | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) | |
new_checkpoint = {} | |
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] | |
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] | |
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] | |
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] | |
if config["class_embed_type"] is None: | |
# No parameters to port | |
... | |
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection": | |
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"] | |
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"] | |
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"] | |
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"] | |
else: | |
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}") | |
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] | |
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] | |
if not controlnet: | |
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] | |
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] | |
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] | |
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] | |
# Retrieves the keys for the input blocks only | |
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
input_blocks = { | |
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] | |
for layer_id in range(num_input_blocks) | |
} | |
# Retrieves the keys for the middle blocks only | |
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
middle_blocks = { | |
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] | |
for layer_id in range(num_middle_blocks) | |
} | |
# Retrieves the keys for the output blocks only | |
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
output_blocks = { | |
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] | |
for layer_id in range(num_output_blocks) | |
} | |
for i in range(1, num_input_blocks): | |
block_id = (i - 1) // (config["layers_per_block"] + 1) | |
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
resnets = [ | |
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
] | |
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.weight" | |
) | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.bias" | |
) | |
paths = renew_resnet_paths(resnets) | |
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
if len(attentions): | |
paths = renew_attention_paths(attentions) | |
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
resnet_0 = middle_blocks[0] | |
attentions = middle_blocks[1] | |
resnet_1 = middle_blocks[2] | |
resnet_0_paths = renew_resnet_paths(resnet_0) | |
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) | |
resnet_1_paths = renew_resnet_paths(resnet_1) | |
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) | |
attentions_paths = renew_attention_paths(attentions) | |
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint( | |
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
for i in range(num_output_blocks): | |
block_id = i // (config["layers_per_block"] + 1) | |
layer_in_block_id = i % (config["layers_per_block"] + 1) | |
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] | |
output_block_list = {} | |
for layer in output_block_layers: | |
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) | |
if layer_id in output_block_list: | |
output_block_list[layer_id].append(layer_name) | |
else: | |
output_block_list[layer_id] = [layer_name] | |
if len(output_block_list) > 1: | |
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] | |
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] | |
resnet_0_paths = renew_resnet_paths(resnets) | |
paths = renew_resnet_paths(resnets) | |
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
output_block_list = {k: sorted(v) for k, v in output_block_list.items()} | |
if ["conv.bias", "conv.weight"] in output_block_list.values(): | |
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
f"output_blocks.{i}.{index}.conv.weight" | |
] | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
f"output_blocks.{i}.{index}.conv.bias" | |
] | |
# Clear attentions as they have been attributed above. | |
if len(attentions) == 2: | |
attentions = [] | |
if len(attentions): | |
paths = renew_attention_paths(attentions) | |
meta_path = { | |
"old": f"output_blocks.{i}.1", | |
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", | |
} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
else: | |
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) | |
for path in resnet_0_paths: | |
old_path = ".".join(["output_blocks", str(i), path["old"]]) | |
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) | |
new_checkpoint[new_path] = unet_state_dict[old_path] | |
if controlnet: | |
# conditioning embedding | |
orig_index = 0 | |
new_checkpoint["controlnet_cond_embedding.conv_in.weight"] = unet_state_dict.pop( | |
f"input_hint_block.{orig_index}.weight" | |
) | |
new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop( | |
f"input_hint_block.{orig_index}.bias" | |
) | |
orig_index += 2 | |
diffusers_index = 0 | |
while diffusers_index < 6: | |
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"] = unet_state_dict.pop( | |
f"input_hint_block.{orig_index}.weight" | |
) | |
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"] = unet_state_dict.pop( | |
f"input_hint_block.{orig_index}.bias" | |
) | |
diffusers_index += 1 | |
orig_index += 2 | |
new_checkpoint["controlnet_cond_embedding.conv_out.weight"] = unet_state_dict.pop( | |
f"input_hint_block.{orig_index}.weight" | |
) | |
new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop( | |
f"input_hint_block.{orig_index}.bias" | |
) | |
# down blocks | |
for i in range(num_input_blocks): | |
new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(f"zero_convs.{i}.0.weight") | |
new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(f"zero_convs.{i}.0.bias") | |
# mid block | |
new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop("middle_block_out.0.weight") | |
new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop("middle_block_out.0.bias") | |
return new_checkpoint | |
def convert_ldm_vae_checkpoint(checkpoint, config): | |
# extract state dict for VAE | |
vae_state_dict = {} | |
vae_key = "first_stage_model." | |
keys = list(checkpoint.keys()) | |
for key in keys: | |
if key.startswith(vae_key): | |
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | |
new_checkpoint = {} | |
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] | |
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] | |
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] | |
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] | |
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] | |
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] | |
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
# Retrieves the keys for the encoder down blocks only | |
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) | |
down_blocks = { | |
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
} | |
# Retrieves the keys for the decoder up blocks only | |
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) | |
up_blocks = { | |
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) | |
} | |
for i in range(num_down_blocks): | |
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.weight" | |
) | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.bias" | |
) | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
resnets = [ | |
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
] | |
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.weight" | |
] | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.bias" | |
] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
return new_checkpoint | |
def convert_ldm_bert_checkpoint(checkpoint, config): | |
def _copy_attn_layer(hf_attn_layer, pt_attn_layer): | |
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight | |
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight | |
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight | |
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight | |
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias | |
def _copy_linear(hf_linear, pt_linear): | |
hf_linear.weight = pt_linear.weight | |
hf_linear.bias = pt_linear.bias | |
def _copy_layer(hf_layer, pt_layer): | |
# copy layer norms | |
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0]) | |
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0]) | |
# copy attn | |
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1]) | |
# copy MLP | |
pt_mlp = pt_layer[1][1] | |
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0]) | |
_copy_linear(hf_layer.fc2, pt_mlp.net[2]) | |
def _copy_layers(hf_layers, pt_layers): | |
for i, hf_layer in enumerate(hf_layers): | |
if i != 0: | |
i += i | |
pt_layer = pt_layers[i : i + 2] | |
_copy_layer(hf_layer, pt_layer) | |
hf_model = LDMBertModel(config).eval() | |
# copy embeds | |
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight | |
hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight | |
# copy layer norm | |
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm) | |
# copy hidden layers | |
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers) | |
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits) | |
return hf_model | |
def convert_ldm_clip_checkpoint(checkpoint, dtype=torch.float16): | |
text_model = CLIPTextModel.from_pretrained("animatediff/sd/text_encoder", torch_dtype=dtype) | |
keys = list(checkpoint.keys()) | |
text_model_dict = {} | |
for key in keys: | |
if key.startswith("cond_stage_model.transformer"): | |
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] | |
text_model.load_state_dict(text_model_dict, strict=False) | |
return text_model | |
textenc_conversion_lst = [ | |
("cond_stage_model.model.positional_embedding", "text_model.embeddings.position_embedding.weight"), | |
("cond_stage_model.model.token_embedding.weight", "text_model.embeddings.token_embedding.weight"), | |
("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"), | |
("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"), | |
] | |
textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst} | |
textenc_transformer_conversion_lst = [ | |
# (stable-diffusion, HF Diffusers) | |
("resblocks.", "text_model.encoder.layers."), | |
("ln_1", "layer_norm1"), | |
("ln_2", "layer_norm2"), | |
(".c_fc.", ".fc1."), | |
(".c_proj.", ".fc2."), | |
(".attn", ".self_attn"), | |
("ln_final.", "transformer.text_model.final_layer_norm."), | |
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), | |
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), | |
] | |
protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst} | |
textenc_pattern = re.compile("|".join(protected.keys())) | |
def convert_paint_by_example_checkpoint(checkpoint): | |
config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14") | |
model = PaintByExampleImageEncoder(config) | |
keys = list(checkpoint.keys()) | |
text_model_dict = {} | |
for key in keys: | |
if key.startswith("cond_stage_model.transformer"): | |
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] | |
# load clip vision | |
model.model.load_state_dict(text_model_dict) | |
# load mapper | |
keys_mapper = { | |
k[len("cond_stage_model.mapper.res") :]: v | |
for k, v in checkpoint.items() | |
if k.startswith("cond_stage_model.mapper") | |
} | |
MAPPING = { | |
"attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"], | |
"attn.c_proj": ["attn1.to_out.0"], | |
"ln_1": ["norm1"], | |
"ln_2": ["norm3"], | |
"mlp.c_fc": ["ff.net.0.proj"], | |
"mlp.c_proj": ["ff.net.2"], | |
} | |
mapped_weights = {} | |
for key, value in keys_mapper.items(): | |
prefix = key[: len("blocks.i")] | |
suffix = key.split(prefix)[-1].split(".")[-1] | |
name = key.split(prefix)[-1].split(suffix)[0][1:-1] | |
mapped_names = MAPPING[name] | |
num_splits = len(mapped_names) | |
for i, mapped_name in enumerate(mapped_names): | |
new_name = ".".join([prefix, mapped_name, suffix]) | |
shape = value.shape[0] // num_splits | |
mapped_weights[new_name] = value[i * shape : (i + 1) * shape] | |
model.mapper.load_state_dict(mapped_weights) | |
# load final layer norm | |
model.final_layer_norm.load_state_dict( | |
{ | |
"bias": checkpoint["cond_stage_model.final_ln.bias"], | |
"weight": checkpoint["cond_stage_model.final_ln.weight"], | |
} | |
) | |
# load final proj | |
model.proj_out.load_state_dict( | |
{ | |
"bias": checkpoint["proj_out.bias"], | |
"weight": checkpoint["proj_out.weight"], | |
} | |
) | |
# load uncond vector | |
model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"]) | |
return model | |
def convert_open_clip_checkpoint(checkpoint): | |
text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder") | |
keys = list(checkpoint.keys()) | |
text_model_dict = {} | |
if "cond_stage_model.model.text_projection" in checkpoint: | |
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0]) | |
else: | |
d_model = 1024 | |
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids") | |
for key in keys: | |
if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer | |
continue | |
if key in textenc_conversion_map: | |
text_model_dict[textenc_conversion_map[key]] = checkpoint[key] | |
if key.startswith("cond_stage_model.model.transformer."): | |
new_key = key[len("cond_stage_model.model.transformer.") :] | |
if new_key.endswith(".in_proj_weight"): | |
new_key = new_key[: -len(".in_proj_weight")] | |
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) | |
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :] | |
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :] | |
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :] | |
elif new_key.endswith(".in_proj_bias"): | |
new_key = new_key[: -len(".in_proj_bias")] | |
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) | |
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model] | |
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2] | |
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :] | |
else: | |
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) | |
text_model_dict[new_key] = checkpoint[key] | |
text_model.load_state_dict(text_model_dict) | |
return text_model | |
def stable_unclip_image_encoder(original_config): | |
""" | |
Returns the image processor and clip image encoder for the img2img unclip pipeline. | |
We currently know of two types of stable unclip models which separately use the clip and the openclip image | |
encoders. | |
""" | |
image_embedder_config = original_config.model.params.embedder_config | |
sd_clip_image_embedder_class = image_embedder_config.target | |
sd_clip_image_embedder_class = sd_clip_image_embedder_class.split(".")[-1] | |
if sd_clip_image_embedder_class == "ClipImageEmbedder": | |
clip_model_name = image_embedder_config.params.model | |
if clip_model_name == "ViT-L/14": | |
feature_extractor = CLIPImageProcessor() | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") | |
else: | |
raise NotImplementedError(f"Unknown CLIP checkpoint name in stable diffusion checkpoint {clip_model_name}") | |
elif sd_clip_image_embedder_class == "FrozenOpenCLIPImageEmbedder": | |
feature_extractor = CLIPImageProcessor() | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") | |
else: | |
raise NotImplementedError( | |
f"Unknown CLIP image embedder class in stable diffusion checkpoint {sd_clip_image_embedder_class}" | |
) | |
return feature_extractor, image_encoder | |
def stable_unclip_image_noising_components( | |
original_config, clip_stats_path: Optional[str] = None, device: Optional[str] = None | |
): | |
""" | |
Returns the noising components for the img2img and txt2img unclip pipelines. | |
Converts the stability noise augmentor into | |
1. a `StableUnCLIPImageNormalizer` for holding the CLIP stats | |
2. a `DDPMScheduler` for holding the noise schedule | |
If the noise augmentor config specifies a clip stats path, the `clip_stats_path` must be provided. | |
""" | |
noise_aug_config = original_config.model.params.noise_aug_config | |
noise_aug_class = noise_aug_config.target | |
noise_aug_class = noise_aug_class.split(".")[-1] | |
if noise_aug_class == "CLIPEmbeddingNoiseAugmentation": | |
noise_aug_config = noise_aug_config.params | |
embedding_dim = noise_aug_config.timestep_dim | |
max_noise_level = noise_aug_config.noise_schedule_config.timesteps | |
beta_schedule = noise_aug_config.noise_schedule_config.beta_schedule | |
image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedding_dim) | |
image_noising_scheduler = DDPMScheduler(num_train_timesteps=max_noise_level, beta_schedule=beta_schedule) | |
if "clip_stats_path" in noise_aug_config: | |
if clip_stats_path is None: | |
raise ValueError("This stable unclip config requires a `clip_stats_path`") | |
clip_mean, clip_std = torch.load(clip_stats_path, map_location=device) | |
clip_mean = clip_mean[None, :] | |
clip_std = clip_std[None, :] | |
clip_stats_state_dict = { | |
"mean": clip_mean, | |
"std": clip_std, | |
} | |
image_normalizer.load_state_dict(clip_stats_state_dict) | |
else: | |
raise NotImplementedError(f"Unknown noise augmentor class: {noise_aug_class}") | |
return image_normalizer, image_noising_scheduler | |
def convert_controlnet_checkpoint( | |
checkpoint, original_config, checkpoint_path, image_size, upcast_attention, extract_ema | |
): | |
ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True) | |
ctrlnet_config["upcast_attention"] = upcast_attention | |
ctrlnet_config.pop("sample_size") | |
controlnet_model = ControlNetModel(**ctrlnet_config) | |
converted_ctrl_checkpoint = convert_ldm_unet_checkpoint( | |
checkpoint, ctrlnet_config, path=checkpoint_path, extract_ema=extract_ema, controlnet=True | |
) | |
controlnet_model.load_state_dict(converted_ctrl_checkpoint) | |
return controlnet_model | |