Spaces:
Runtime error
Runtime error
import gradio as gr | |
import random | |
from datasets import load_dataset | |
from sentence_transformers import SentenceTransformer, util | |
import logging | |
import torch | |
from PIL import Image | |
# Create a custom logger | |
logger = logging.getLogger(__name__) | |
# Set the level of this logger. INFO means that it will log all INFO, WARNING, ERROR, and CRITICAL messages. | |
logger.setLevel(logging.INFO) | |
# Create handlers | |
c_handler = logging.StreamHandler() | |
c_handler.setLevel(logging.INFO) | |
# Create formatters and add it to handlers | |
c_format = logging.Formatter('%(name)s - %(levelname)s - %(message)s') | |
c_handler.setFormatter(c_format) | |
# Add handlers to the logger | |
logger.addHandler(c_handler) | |
class SearchEngine: | |
def __init__(self, device="cpu"): | |
self.device = device if torch.cuda.is_available() else "cpu" | |
self.model = SentenceTransformer('clip-ViT-B-32') | |
self.embedding_dataset = load_dataset("JLD/unsplash25k-image-embeddings", trust_remote_code=True, split="train").with_format("torch", device=self.device) | |
image_dataset = load_dataset("jamescalam/unsplash-25k-photos", trust_remote_code=True, revision="refs/pr/3") | |
self.image_dataset = {image["photo_id"]: image["photo_image_url"] for image in image_dataset["train"]} | |
def get_candidates(self, query_embedding, top_k=5): | |
logger.info("Getting candidates") | |
candidates = util.semantic_search(query_embeddings=query_embedding.unsqueeze(0), corpus_embeddings=self.embedding_dataset["image_embedding"].squeeze(1), top_k=top_k)[0] | |
return [self.image_dataset.get(self.embedding_dataset[candidate["corpus_id"]]["image_id"], "https://upload.wikimedia.org/wikipedia/commons/6/69/NASA-HS201427a-HubbleUltraDeepField2014-20140603.jpg") for candidate in candidates] | |
def search_images_from_text(self, text): | |
logger.info("Searching images from text") | |
emb = self.model.encode(text, convert_to_tensor=True, device=self.device) | |
return self.get_candidates(query_embedding=emb) | |
def search_images_from_image(self, image): | |
logger.info("Searching images from image") | |
emb = self.model.encode(Image.fromarray(image), convert_to_tensor=True, device=self.device) | |
return self.get_candidates(query_embedding=emb) | |
def main(): | |
logger.info("Loading dataset") | |
search_engine = SearchEngine() | |
text_to_image_iface = gr.Interface(fn=search_engine.search_images_from_text, inputs="text", outputs="gallery") | |
image_to_image_iface = gr.Interface(fn=search_engine.search_images_from_image, inputs="image", outputs="gallery") | |
demo = gr.TabbedInterface([text_to_image_iface, image_to_image_iface], ["Text query", "Image query"]) | |
demo.launch() | |
if __name__ == "__main__": | |
main() | |