JLD's picture
Make device dependable of the machine capacity
446f144
import gradio as gr
import random
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, util
import logging
import torch
from PIL import Image
# Create a custom logger
logger = logging.getLogger(__name__)
# Set the level of this logger. INFO means that it will log all INFO, WARNING, ERROR, and CRITICAL messages.
logger.setLevel(logging.INFO)
# Create handlers
c_handler = logging.StreamHandler()
c_handler.setLevel(logging.INFO)
# Create formatters and add it to handlers
c_format = logging.Formatter('%(name)s - %(levelname)s - %(message)s')
c_handler.setFormatter(c_format)
# Add handlers to the logger
logger.addHandler(c_handler)
class SearchEngine:
def __init__(self, device="cpu"):
self.device = device if torch.cuda.is_available() else "cpu"
self.model = SentenceTransformer('clip-ViT-B-32')
self.embedding_dataset = load_dataset("JLD/unsplash25k-image-embeddings", trust_remote_code=True, split="train").with_format("torch", device=self.device)
image_dataset = load_dataset("jamescalam/unsplash-25k-photos", trust_remote_code=True, revision="refs/pr/3")
self.image_dataset = {image["photo_id"]: image["photo_image_url"] for image in image_dataset["train"]}
def get_candidates(self, query_embedding, top_k=5):
logger.info("Getting candidates")
candidates = util.semantic_search(query_embeddings=query_embedding.unsqueeze(0), corpus_embeddings=self.embedding_dataset["image_embedding"].squeeze(1), top_k=top_k)[0]
return [self.image_dataset.get(self.embedding_dataset[candidate["corpus_id"]]["image_id"], "https://upload.wikimedia.org/wikipedia/commons/6/69/NASA-HS201427a-HubbleUltraDeepField2014-20140603.jpg") for candidate in candidates]
def search_images_from_text(self, text):
logger.info("Searching images from text")
emb = self.model.encode(text, convert_to_tensor=True, device=self.device)
return self.get_candidates(query_embedding=emb)
def search_images_from_image(self, image):
logger.info("Searching images from image")
emb = self.model.encode(Image.fromarray(image), convert_to_tensor=True, device=self.device)
return self.get_candidates(query_embedding=emb)
def main():
logger.info("Loading dataset")
search_engine = SearchEngine()
text_to_image_iface = gr.Interface(fn=search_engine.search_images_from_text, inputs="text", outputs="gallery")
image_to_image_iface = gr.Interface(fn=search_engine.search_images_from_image, inputs="image", outputs="gallery")
demo = gr.TabbedInterface([text_to_image_iface, image_to_image_iface], ["Text query", "Image query"])
demo.launch()
if __name__ == "__main__":
main()