File size: 10,901 Bytes
ba1724a 7285400 ba1724a 7285400 6c71bbc 7285400 6c71bbc 7285400 6c71bbc 7285400 65f9879 7285400 6c71bbc 7285400 da3c141 ba1724a 7285400 ba1724a 7285400 6c71bbc 7285400 6c71bbc ba1724a 7285400 ba1724a 7285400 ba1724a 7285400 ba1724a 7285400 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import re
import gradio as gr
from scipy.sparse import load_npz
import torch
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import normalize
from transformers import BertTokenizer, BertModel
import numpy as np
from datasets import load_dataset
from gensim.models import KeyedVectors
import plotly.graph_objects as go
from sklearn.decomposition import PCA
class ArxivSearch:
def __init__(self, dataset, embedding="tfidf"):
self.dataset = dataset
self.embedding = embedding
self.documents = []
self.titles = []
self.raw_texts = []
self.arxiv_ids = []
self.last_results = []
self.embedding_dropdown = gr.Dropdown(
choices=["tfidf", "word2vec", "bert"],
value="tfidf",
label="Model"
)
# Add a button to show the 3D plot
self.plot_button = gr.Button("Show 3D Plot")
# Define the interface using Blocks for more flexibility
with gr.Blocks() as self.iface:
gr.Markdown("# arXiv Search Engine")
gr.Markdown("Search arXiv papers by keyword and embedding model.")
with gr.Row():
self.query_box = gr.Textbox(lines=1, placeholder="Enter your search query", label="Query")
self.embedding_dropdown.render()
self.plot_button.render()
with gr.Row():
self.plot_output = gr.Plot()
self.output_md = gr.Markdown()
self.query_box.submit(
self.search_function,
inputs=[self.query_box, self.embedding_dropdown],
outputs=self.output_md
)
self.embedding_dropdown.change(
self.search_function,
inputs=[self.query_box, self.embedding_dropdown],
outputs=self.output_md
)
self.plot_button.click(
self.plot_3d_embeddings,
inputs=[self.embedding_dropdown],
outputs=self.plot_output
)
# self.iface = gr.Interface(
# fn=self.search_function,
# inputs=[
# gr.Textbox(lines=1, placeholder="Enter your search query"),
# self.embedding_dropdown
# ],
# outputs=gr.Markdown(),
# title="arXiv Search Engine",
# description="Search arXiv papers by keyword and embedding model.",
# )
self.load_data(dataset)
# self.load_model(embedding)
self.load_model('tfidf')
self.load_model('word2vec')
self.load_model('bert')
self.iface.launch()
def load_data(self, dataset):
train_data = dataset["train"]
for item in train_data.select(range(len(train_data))):
text = item["text"]
if not text or len(text.strip()) < 10:
continue
lines = text.splitlines()
title_lines = []
found_arxiv = False
arxiv_id = None
for line in lines:
line_strip = line.strip()
if not found_arxiv and line_strip.lower().startswith("arxiv:"):
found_arxiv = True
match = re.search(r'arxiv:\d{4}\.\d{4,5}v\d', line_strip, flags=re.IGNORECASE)
if match:
arxiv_id = match.group(0).lower()
elif not found_arxiv:
title_lines.append(line_strip)
else:
if line_strip.lower().startswith("abstract"):
break
title = " ".join(title_lines).strip()
self.raw_texts.append(text.strip())
self.titles.append(title)
self.documents.append(text.strip())
self.arxiv_ids.append(arxiv_id)
def keyword_match_ranking(self, query, top_n=5):
query_terms = query.lower().split()
query_indices = [i for i, term in enumerate(self.feature_names) if term in query_terms]
if not query_indices:
return []
scores = []
for doc_idx in range(self.tfidf_matrix.shape[0]):
doc_vector = self.tfidf_matrix[doc_idx]
doc_score = sum(doc_vector[0, i] for i in query_indices)
if doc_score > 0:
scores.append((doc_idx, doc_score))
scores.sort(key=lambda x: x[1], reverse=True)
return scores[:top_n]
def plot_3d_embeddings(self, embedding):
# Example: plot random points, replace with your embeddings
pca = PCA(n_components=3)
results_indices = [i[0] for i in self.last_results]
if embedding == "tfidf":
reduced_data = pca.fit_transform(self.tfidf_matrix[:5000].toarray())
reduced_results_points = pca.transform(self.tfidf_matrix[results_indices].toarray()) if len(results_indices) > 0 else np.empty((0, 3))
elif embedding == "word2vec":
reduced_data = pca.fit_transform(self.word2vec_embeddings[:5000])
reduced_results_points = pca.transform(self.word2vec_embeddings[results_indices]) if len(results_indices) > 0 else np.empty((0, 3))
elif embedding == "bert":
reduced_data = pca.fit_transform(self.bert_embeddings[:5000])
reduced_results_points = pca.transform(self.bert_embeddings[results_indices]) if len(results_indices) > 0 else np.empty((0, 3))
else:
raise ValueError(f"Unsupported embedding type: {embedding}")
trace = go.Scatter3d(
x=reduced_data[:, 0],
y=reduced_data[:, 1],
z=reduced_data[:, 2],
mode='markers',
marker=dict(size=3.5, color='white', opacity=0.4),
)
layout = go.Layout(
margin=dict(l=0, r=0, b=0, t=0),
scene=dict(
xaxis_title='X',
yaxis_title='Y',
zaxis_title='Z',
xaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
yaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
zaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
),
paper_bgcolor='black', # Outside the plotting area
plot_bgcolor='black', # Plotting area
font=dict(color='white') # Axis and legend text
)
if len(reduced_results_points) > 0:
results_trace = go.Scatter3d(
x=reduced_results_points[:, 0],
y=reduced_results_points[:, 1],
z=reduced_results_points[:, 2],
mode='markers',
marker=dict(size=3.5, color='orange', opacity=0.9),
)
fig = go.Figure(data=[trace, results_trace], layout=layout)
else:
fig = go.Figure(data=[trace], layout=layout)
return fig
def word2vec_search(self, query, top_n=5):
tokens = [word for word in query.split() if word in self.wv_model.key_to_index]
if not tokens:
return []
vectors = np.array([self.wv_model[word] for word in tokens])
query_vec = normalize(np.mean(vectors, axis=0).reshape(1, -1))
sims = cosine_similarity(query_vec, self.word2vec_embeddings).flatten()
top_indices = sims.argsort()[::-1][:top_n]
return [(i, sims[i]) for i in top_indices]
def bert_search(self, query, top_n=5):
with torch.no_grad():
inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True)
outputs = self.model(**inputs)
query_vec = normalize(outputs.last_hidden_state[:, 0, :].numpy())
sims = cosine_similarity(query_vec, self.bert_embeddings).flatten()
top_indices = sims.argsort()[::-1][:top_n]
return [(i, sims[i]) for i in top_indices]
def load_model(self, embedding):
if embedding == "tfidf":
self.tfidf_matrix = load_npz("TF-IDF embeddings/tfidf_matrix_train.npz")
with open("TF-IDF embeddings/feature_names.txt", "r") as f:
self.feature_names = [line.strip() for line in f.readlines()]
elif embedding == "word2vec":
# Use trimmed model here
self.word2vec_embeddings = normalize(np.load("Word2Vec embeddings/word2vec_embedding.npz")["word2vec_embedding"])
self.wv_model = KeyedVectors.load("models/word2vec-trimmed.model")
elif embedding == "bert":
self.bert_embeddings = normalize(np.load("BERT embeddings/bert_embedding.npz")["bert_embedding"])
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.model = BertModel.from_pretrained('bert-base-uncased')
self.model.eval()
else:
raise ValueError(f"Unsupported embedding type: {embedding}")
def on_model_change(self, change):
new_model = change["new"]
self.embedding = new_model
self.load_model(new_model)
def snippet_before_abstract(self, text):
pattern = re.compile(r'a\s*b\s*s\s*t\s*r\s*a\s*c\s*t|i\s*n\s*t\s*r\s*o\s*d\s*u\s*c\s*t\s*i\s*o\s*n', re.IGNORECASE)
match = pattern.search(text)
if match:
return text[:match.start()].strip()
else:
return text[:100].strip()
def search_function(self, query, embedding):
# Load or switch embedding model here if needed
if embedding == "tfidf":
results = self.keyword_match_ranking(query)
elif embedding == "word2vec":
results = self.word2vec_search(query)
elif embedding == "bert":
results = self.bert_search(query)
else:
return "No results found."
if not results:
self.last_results = []
return "No results found."
if results:
self.last_results = results
output = ""
display_rank = 1
for idx, score in results:
if not self.arxiv_ids[idx]:
continue
link = f"https://arxiv.org/abs/{self.arxiv_ids[idx].replace('arxiv:', '')}"
snippet = self.snippet_before_abstract(self.documents[idx]).replace('\n', '<br>')
output += f"### Document {display_rank}\n"
output += f"[arXiv Link]({link})\n\n"
output += f"<pre>{snippet}</pre>\n\n---\n"
display_rank += 1
return output
if __name__ == "__main__":
dataset = load_dataset("ccdv/arxiv-classification", "no_ref") # replace with your dataset
search_engine = ArxivSearch(dataset, embedding="tfidf") # Initialize with tfidf or any other embedding
search_engine.iface.launch() |