Jonas Leeb commited on
Commit
20ac67a
·
1 Parent(s): 23585ec

more outputs

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -50,7 +50,7 @@ class ArxivSearch:
50
  self.search_button = gr.Button("Search")
51
 
52
  self.output_md = gr.Markdown()
53
-
54
  self.query_box.submit(
55
  self.search_function,
56
  inputs=[self.query_box, self.embedding_dropdown],
@@ -201,7 +201,7 @@ class ArxivSearch:
201
  fig = go.Figure(data=[trace], layout=layout)
202
  return fig
203
 
204
- def keyword_match_ranking(self, query, top_n=5):
205
  query_terms = query.lower().split()
206
  query_indices = [i for i, term in enumerate(self.feature_names) if term in query_terms]
207
  if not query_indices:
@@ -215,7 +215,7 @@ class ArxivSearch:
215
  scores.sort(key=lambda x: x[1], reverse=True)
216
  return scores[:top_n]
217
 
218
- def word2vec_search(self, query, top_n=5):
219
  tokens = [word for word in query.split() if word in self.wv_model.key_to_index]
220
  if not tokens:
221
  return []
@@ -226,7 +226,7 @@ class ArxivSearch:
226
  top_indices = sims.argsort()[::-1][:top_n]
227
  return [(i, sims[i]) for i in top_indices]
228
 
229
- def bert_search(self, query, top_n=5):
230
  with torch.no_grad():
231
  inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True)
232
  outputs = self.model(**inputs)
@@ -236,7 +236,7 @@ class ArxivSearch:
236
  top_indices = sims.argsort()[::-1][:top_n]
237
  return [(i, sims[i]) for i in top_indices]
238
 
239
- def bert_search_2(self, query, top_n=5):
240
  with torch.no_grad():
241
  inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True)
242
  outputs = self.model(**inputs)
 
50
  self.search_button = gr.Button("Search")
51
 
52
  self.output_md = gr.Markdown()
53
+
54
  self.query_box.submit(
55
  self.search_function,
56
  inputs=[self.query_box, self.embedding_dropdown],
 
201
  fig = go.Figure(data=[trace], layout=layout)
202
  return fig
203
 
204
+ def keyword_match_ranking(self, query, top_n=10):
205
  query_terms = query.lower().split()
206
  query_indices = [i for i, term in enumerate(self.feature_names) if term in query_terms]
207
  if not query_indices:
 
215
  scores.sort(key=lambda x: x[1], reverse=True)
216
  return scores[:top_n]
217
 
218
+ def word2vec_search(self, query, top_n=10):
219
  tokens = [word for word in query.split() if word in self.wv_model.key_to_index]
220
  if not tokens:
221
  return []
 
226
  top_indices = sims.argsort()[::-1][:top_n]
227
  return [(i, sims[i]) for i in top_indices]
228
 
229
+ def bert_search(self, query, top_n=10):
230
  with torch.no_grad():
231
  inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True)
232
  outputs = self.model(**inputs)
 
236
  top_indices = sims.argsort()[::-1][:top_n]
237
  return [(i, sims[i]) for i in top_indices]
238
 
239
+ def bert_search_2(self, query, top_n=10):
240
  with torch.no_grad():
241
  inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True)
242
  outputs = self.model(**inputs)