Jonas Leeb
commited on
Commit
·
4bc7b36
1
Parent(s):
0cbf59f
added sbert and simplified plotting
Browse files- BERT embeddings/sbert_embedding.npz +3 -0
- app.py +57 -53
BERT embeddings/sbert_embedding.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5285b4f848c6dd13e7141a2684857daf6d8d02fdb18fb4812182fe31780c717
|
3 |
+
size 40407781
|
app.py
CHANGED
@@ -11,8 +11,8 @@ from gensim.models import KeyedVectors
|
|
11 |
import plotly.graph_objects as go
|
12 |
from sklearn.decomposition import PCA
|
13 |
from transformers import AutoTokenizer, AutoModel
|
14 |
-
|
15 |
-
|
16 |
|
17 |
class ArxivSearch:
|
18 |
def __init__(self, dataset, embedding="bert"):
|
@@ -28,7 +28,7 @@ class ArxivSearch:
|
|
28 |
|
29 |
# model selection
|
30 |
self.embedding_dropdown = gr.Dropdown(
|
31 |
-
choices=["tfidf", "word2vec", "bert", "scibert"],
|
32 |
value="bert",
|
33 |
label="Model"
|
34 |
)
|
@@ -56,7 +56,6 @@ class ArxivSearch:
|
|
56 |
inputs=[self.query_box, self.embedding_dropdown],
|
57 |
outputs=self.output_md
|
58 |
)
|
59 |
-
|
60 |
self.embedding_dropdown.change(
|
61 |
self.search_function,
|
62 |
inputs=[self.query_box, self.embedding_dropdown],
|
@@ -78,6 +77,7 @@ class ArxivSearch:
|
|
78 |
self.load_model('word2vec')
|
79 |
self.load_model('bert')
|
80 |
self.load_model('scibert')
|
|
|
81 |
|
82 |
self.iface.launch()
|
83 |
|
@@ -113,6 +113,16 @@ class ArxivSearch:
|
|
113 |
self.documents.append(text.strip())
|
114 |
self.arxiv_ids.append(arxiv_id)
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
def plot_3d_embeddings(self):
|
117 |
# Example: plot random points, replace with your embeddings
|
118 |
pca = PCA(n_components=3)
|
@@ -123,29 +133,14 @@ class ArxivSearch:
|
|
123 |
pca.fit(all_data)
|
124 |
reduced_data = pca.transform(self.tfidf_matrix[:5000].toarray())
|
125 |
reduced_results_points = pca.transform(self.tfidf_matrix[results_indices].toarray()) if len(results_indices) > 0 else np.empty((0, 3))
|
126 |
-
|
127 |
elif self.embedding == "word2vec":
|
128 |
-
|
129 |
-
all_data = self.word2vec_embeddings[all_indices]
|
130 |
-
pca.fit(all_data)
|
131 |
-
reduced_data = pca.transform(self.word2vec_embeddings[:5000])
|
132 |
-
reduced_results_points = pca.transform(self.word2vec_embeddings[results_indices]) if len(results_indices) > 0 else np.empty((0, 3))
|
133 |
-
query_point = pca.transform(self.query_encoding) if self.query_encoding is not None and self.query_encoding.shape[0] > 0 else np.empty((0, 3))
|
134 |
-
|
135 |
elif self.embedding == "bert":
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
reduced_data = pca.transform(self.bert_embeddings[:5000])
|
140 |
-
reduced_results_points = pca.transform(self.bert_embeddings[results_indices]) if len(results_indices) > 0 else np.empty((0, 3))
|
141 |
-
query_point = pca.transform(self.query_encoding) if self.query_encoding is not None and self.query_encoding.shape[0] > 0 else np.empty((0, 3))
|
142 |
elif self.embedding == "scibert":
|
143 |
-
|
144 |
-
all_data = self.scibert_embeddings[all_indices]
|
145 |
-
pca.fit(all_data)
|
146 |
-
reduced_data = pca.transform(self.scibert_embeddings[:5000])
|
147 |
-
reduced_results_points = pca.transform(self.scibert_embeddings[results_indices]) if len(results_indices) > 0 else np.empty((0, 3))
|
148 |
-
query_point = pca.transform(self.query_encoding) if self.query_encoding is not None and self.query_encoding.shape[0] > 0 else np.empty((0, 3))
|
149 |
else:
|
150 |
raise ValueError(f"Unsupported embedding type: {self.embedding}")
|
151 |
trace = go.Scatter3d(
|
@@ -159,9 +154,9 @@ class ArxivSearch:
|
|
159 |
layout = go.Layout(
|
160 |
margin=dict(l=0, r=0, b=0, t=0),
|
161 |
scene=dict(
|
162 |
-
xaxis_title='
|
163 |
-
yaxis_title='
|
164 |
-
zaxis_title='
|
165 |
xaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
|
166 |
yaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
|
167 |
zaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
|
@@ -222,40 +217,40 @@ class ArxivSearch:
|
|
222 |
|
223 |
def bert_search(self, query, top_n=10):
|
224 |
with torch.no_grad():
|
225 |
-
inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=
|
226 |
outputs = self.model(**inputs)
|
227 |
-
query_vec = normalize(outputs.last_hidden_state[:, 0, :].numpy())
|
|
|
228 |
|
229 |
self.query_encoding = query_vec
|
230 |
sims = cosine_similarity(query_vec, self.bert_embeddings).flatten()
|
231 |
top_indices = sims.argsort()[::-1][:top_n]
|
|
|
232 |
return [(i, sims[i]) for i in top_indices]
|
233 |
|
234 |
def scibert_search(self, query, top_n=10):
|
235 |
with torch.no_grad():
|
236 |
inputs = self.sci_tokenizer(query, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
237 |
outputs = self.sci_model(**inputs)
|
238 |
-
query_vec =
|
239 |
|
240 |
self.query_encoding = query_vec
|
241 |
sims = cosine_similarity(query_vec, self.scibert_embeddings).flatten()
|
242 |
top_indices = sims.argsort()[::-1][:top_n]
|
|
|
243 |
return [(i, sims[i]) for i in top_indices]
|
244 |
|
245 |
-
def
|
246 |
-
|
247 |
-
inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True)
|
248 |
-
outputs = self.model(**inputs)
|
249 |
-
token_embeddings = outputs.last_hidden_state
|
250 |
-
attention_mask = inputs['attention_mask']
|
251 |
-
mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
252 |
-
sentence_embeddings = torch.sum(token_embeddings * mask_expanded, dim=1)
|
253 |
-
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
|
254 |
-
query_vec = sentence_embeddings / sum_mask
|
255 |
self.query_encoding = query_vec
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
def load_model(self, embedding):
|
261 |
self.embedding = embedding
|
@@ -277,6 +272,10 @@ class ArxivSearch:
|
|
277 |
self.sci_tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased')
|
278 |
self.sci_model = AutoModel.from_pretrained('allenai/scibert_scivocab_uncased')
|
279 |
self.sci_model.eval()
|
|
|
|
|
|
|
|
|
280 |
else:
|
281 |
raise ValueError(f"Unsupported embedding type: {self.embedding}")
|
282 |
|
@@ -285,13 +284,15 @@ class ArxivSearch:
|
|
285 |
pattern = re.compile(r'a\s*b\s*s\s*t\s*r\s*a\s*c\s*t|i\s*n\s*t\s*r\s*o\s*d\s*u\s*c\s*t\s*i\s*o\s*n', re.IGNORECASE)
|
286 |
match = pattern.search(text)
|
287 |
if match:
|
288 |
-
return text[:match.start()].strip()
|
289 |
else:
|
290 |
-
return text[:
|
291 |
|
|
|
|
|
292 |
|
293 |
def search_function(self, query, embedding):
|
294 |
-
self.embedding
|
295 |
query = query.encode().decode('unicode_escape') # Interpret escape sequences
|
296 |
|
297 |
# Load or switch embedding model here if needed
|
@@ -303,6 +304,8 @@ class ArxivSearch:
|
|
303 |
results = self.bert_search(query)
|
304 |
elif self.embedding == "scibert":
|
305 |
results = self.scibert_search(query)
|
|
|
|
|
306 |
else:
|
307 |
return "No results found."
|
308 |
|
@@ -317,13 +320,14 @@ class ArxivSearch:
|
|
317 |
display_rank = 1
|
318 |
for idx, score in results:
|
319 |
if not self.arxiv_ids[idx]:
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
|
|
327 |
display_rank += 1
|
328 |
|
329 |
return output
|
|
|
11 |
import plotly.graph_objects as go
|
12 |
from sklearn.decomposition import PCA
|
13 |
from transformers import AutoTokenizer, AutoModel
|
14 |
+
from sentence_transformers import CrossEncoder
|
15 |
+
from sentence_transformers import SentenceTransformer
|
16 |
|
17 |
class ArxivSearch:
|
18 |
def __init__(self, dataset, embedding="bert"):
|
|
|
28 |
|
29 |
# model selection
|
30 |
self.embedding_dropdown = gr.Dropdown(
|
31 |
+
choices=["tfidf", "word2vec", "bert", "scibert", "sbert"],
|
32 |
value="bert",
|
33 |
label="Model"
|
34 |
)
|
|
|
56 |
inputs=[self.query_box, self.embedding_dropdown],
|
57 |
outputs=self.output_md
|
58 |
)
|
|
|
59 |
self.embedding_dropdown.change(
|
60 |
self.search_function,
|
61 |
inputs=[self.query_box, self.embedding_dropdown],
|
|
|
77 |
self.load_model('word2vec')
|
78 |
self.load_model('bert')
|
79 |
self.load_model('scibert')
|
80 |
+
self.load_model('sbert')
|
81 |
|
82 |
self.iface.launch()
|
83 |
|
|
|
113 |
self.documents.append(text.strip())
|
114 |
self.arxiv_ids.append(arxiv_id)
|
115 |
|
116 |
+
def plot_dense(self, embedding, pca, results_indices):
|
117 |
+
print(self.query_encoding.shape[0])
|
118 |
+
all_indices = list(set(results_indices) | set(range(min(5000, embedding.shape[0]))))
|
119 |
+
all_data = embedding[all_indices]
|
120 |
+
pca.fit(all_data)
|
121 |
+
reduced_data = pca.transform(embedding[:5000])
|
122 |
+
reduced_results_points = pca.transform(embedding[results_indices]) if len(results_indices) > 0 else np.empty((0, 3))
|
123 |
+
query_point = pca.transform(self.query_encoding) if self.query_encoding is not None and self.query_encoding.shape[0] > 0 else np.empty((0, 3))
|
124 |
+
return reduced_data, reduced_results_points, query_point
|
125 |
+
|
126 |
def plot_3d_embeddings(self):
|
127 |
# Example: plot random points, replace with your embeddings
|
128 |
pca = PCA(n_components=3)
|
|
|
133 |
pca.fit(all_data)
|
134 |
reduced_data = pca.transform(self.tfidf_matrix[:5000].toarray())
|
135 |
reduced_results_points = pca.transform(self.tfidf_matrix[results_indices].toarray()) if len(results_indices) > 0 else np.empty((0, 3))
|
|
|
136 |
elif self.embedding == "word2vec":
|
137 |
+
reduced_data, reduced_results_points, query_point = self.plot_dense(self.word2vec_embeddings, pca, results_indices)
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
elif self.embedding == "bert":
|
139 |
+
reduced_data, reduced_results_points, query_point = self.plot_dense(self.bert_embeddings, pca, results_indices)
|
140 |
+
elif self.embedding == "sbert":
|
141 |
+
reduced_data, reduced_results_points, query_point = self.plot_dense(self.sbert_embedding, pca, results_indices)
|
|
|
|
|
|
|
142 |
elif self.embedding == "scibert":
|
143 |
+
reduced_data, reduced_results_points, query_point = self.plot_dense(self.scibert_embeddings, pca, results_indices)
|
|
|
|
|
|
|
|
|
|
|
144 |
else:
|
145 |
raise ValueError(f"Unsupported embedding type: {self.embedding}")
|
146 |
trace = go.Scatter3d(
|
|
|
154 |
layout = go.Layout(
|
155 |
margin=dict(l=0, r=0, b=0, t=0),
|
156 |
scene=dict(
|
157 |
+
xaxis_title='PCA 1',
|
158 |
+
yaxis_title='PCA 2',
|
159 |
+
zaxis_title='PCA 3',
|
160 |
xaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
|
161 |
yaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
|
162 |
zaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
|
|
|
217 |
|
218 |
def bert_search(self, query, top_n=10):
|
219 |
with torch.no_grad():
|
220 |
+
inputs = self.tokenizer((query+' ')*2, return_tensors="pt", truncation=True, max_length=512, padding='max_length')
|
221 |
outputs = self.model(**inputs)
|
222 |
+
# query_vec = normalize(outputs.last_hidden_state[:, 0, :].numpy())
|
223 |
+
query_vec = outputs.last_hidden_state[:, 0, :].numpy()
|
224 |
|
225 |
self.query_encoding = query_vec
|
226 |
sims = cosine_similarity(query_vec, self.bert_embeddings).flatten()
|
227 |
top_indices = sims.argsort()[::-1][:top_n]
|
228 |
+
print(f"sim, top_indices: {sims}, {top_indices}")
|
229 |
return [(i, sims[i]) for i in top_indices]
|
230 |
|
231 |
def scibert_search(self, query, top_n=10):
|
232 |
with torch.no_grad():
|
233 |
inputs = self.sci_tokenizer(query, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
234 |
outputs = self.sci_model(**inputs)
|
235 |
+
query_vec = outputs.last_hidden_state[:, 0, :].numpy()
|
236 |
|
237 |
self.query_encoding = query_vec
|
238 |
sims = cosine_similarity(query_vec, self.scibert_embeddings).flatten()
|
239 |
top_indices = sims.argsort()[::-1][:top_n]
|
240 |
+
print(f"sim, top_indices: {sims}, {top_indices}")
|
241 |
return [(i, sims[i]) for i in top_indices]
|
242 |
|
243 |
+
def sbert_search(self, query, top_n=10):
|
244 |
+
query_vec = self.sbert_model.encode([query])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
self.query_encoding = query_vec
|
246 |
+
cos_scores = cosine_similarity(query_vec, self.sbert_embedding)[0]
|
247 |
+
top_k_indices = np.argsort(cos_scores)[-50:][::-1]
|
248 |
+
candidates = [dataset['train'][int(i)]['text'] for i in top_k_indices]
|
249 |
+
scores = self.cross_encoder.predict([(query, doc) for doc in candidates])
|
250 |
+
final_scores = 0.7 * scores + 0.3 * cos_scores[top_k_indices]
|
251 |
+
top_indices = top_k_indices[final_scores.argsort()[::-1][:top_n]]
|
252 |
+
print(f"sim, top_indices: {final_scores}, {top_indices}")
|
253 |
+
return [(top_k_indices[i], final_scores[i]) for i in final_scores.argsort()[::-1][:top_n]]
|
254 |
|
255 |
def load_model(self, embedding):
|
256 |
self.embedding = embedding
|
|
|
272 |
self.sci_tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased')
|
273 |
self.sci_model = AutoModel.from_pretrained('allenai/scibert_scivocab_uncased')
|
274 |
self.sci_model.eval()
|
275 |
+
elif self.embedding == "sbert":
|
276 |
+
self.sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
|
277 |
+
self.sbert_embedding = np.load("BERT embeddings/sbert_embedding.npz")["sbert_embedding"]
|
278 |
+
self.cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2")
|
279 |
else:
|
280 |
raise ValueError(f"Unsupported embedding type: {self.embedding}")
|
281 |
|
|
|
284 |
pattern = re.compile(r'a\s*b\s*s\s*t\s*r\s*a\s*c\s*t|i\s*n\s*t\s*r\s*o\s*d\s*u\s*c\s*t\s*i\s*o\s*n', re.IGNORECASE)
|
285 |
match = pattern.search(text)
|
286 |
if match:
|
287 |
+
return text[:match.start()].strip() if match.start() < 1000 else text[:100].strip()
|
288 |
else:
|
289 |
+
return text[:300].strip()
|
290 |
|
291 |
+
def set_embedding(self, embedding):
|
292 |
+
self.embedding = embedding
|
293 |
|
294 |
def search_function(self, query, embedding):
|
295 |
+
self.set_embedding(embedding)
|
296 |
query = query.encode().decode('unicode_escape') # Interpret escape sequences
|
297 |
|
298 |
# Load or switch embedding model here if needed
|
|
|
304 |
results = self.bert_search(query)
|
305 |
elif self.embedding == "scibert":
|
306 |
results = self.scibert_search(query)
|
307 |
+
elif self.embedding == "sbert":
|
308 |
+
results = self.sbert_search(query)
|
309 |
else:
|
310 |
return "No results found."
|
311 |
|
|
|
320 |
display_rank = 1
|
321 |
for idx, score in results:
|
322 |
if not self.arxiv_ids[idx]:
|
323 |
+
output += f"### Document {display_rank}\n"
|
324 |
+
output += f"<pre>{self.documents[idx][:200]}</pre>\n\n"
|
325 |
+
else:
|
326 |
+
link = f"https://arxiv.org/abs/{self.arxiv_ids[idx].replace('arxiv:', '')}"
|
327 |
+
snippet = self.snippet_before_abstract(self.documents[idx]).replace('\n', '<br>')
|
328 |
+
output += f"### Document {display_rank}\n"
|
329 |
+
output += f"[arXiv Link]({link})\n\n"
|
330 |
+
output += f"<pre>{snippet}</pre>\n\n---\n"
|
331 |
display_rank += 1
|
332 |
|
333 |
return output
|