import re import gradio as gr from scipy.sparse import load_npz import torch from sklearn.metrics.pairwise import cosine_similarity from sklearn.preprocessing import normalize from transformers import BertTokenizer, BertModel import numpy as np import pandas as pd from datasets import load_dataset from gensim.models import KeyedVectors import plotly.graph_objects as go from sklearn.decomposition import PCA from transformers import AutoTokenizer, AutoModel from sentence_transformers import CrossEncoder from sentence_transformers import SentenceTransformer class ArxivSearch: def __init__(self, dataset, embedding="sbert"): self.dataset = dataset self.embedding = embedding self.query = None self.documents = [] self.titles = [] self.raw_texts = [] self.arxiv_ids = [] self.last_results = [] self.query_encoding = None # model selection self.embedding_dropdown = gr.Dropdown( choices=["tfidf", "word2vec", "bert", "sbert", "clustered sbert"], value="sbert", label="Model" ) self.plot_button = gr.Button("Show 3D Plot") # Gradio blocks for UI elements with gr.Blocks() as self.iface: gr.Markdown("# arXiv Search Engine") gr.Markdown("Search arXiv papers by keyword and embedding model.") self.plot_output = gr.Plot() with gr.Row(): self.query_box = gr.Textbox(lines=1, placeholder="Enter your search query", label="Query") self.embedding_dropdown.render() self.plot_button.render() with gr.Column(): self.search_button = gr.Button("Search") self.output_md = gr.Markdown() self.query_box.submit( self.search_function, inputs=[self.query_box, self.embedding_dropdown], outputs=self.output_md ) # self.embedding_dropdown.change( # self.model_switch, # inputs=[self.embedding_dropdown], # outputs=self.output_md # ) self.embedding_dropdown.change( self.search_function, inputs=[self.query_box, self.embedding_dropdown], outputs=self.output_md ) self.plot_button.click( self.plot_3d_embeddings, inputs=[], outputs=self.plot_output ) self.search_button.click( self.search_function, inputs=[self.query_box, self.embedding_dropdown], outputs=self.output_md ) self.load_data(dataset) # self.load_model(embedding) self.load_model('tfidf') self.load_model('word2vec') self.load_model('bert') # self.load_model('scibert') # self.load_model('sbert') self.load_model('clustered sbert') self.iface.launch() def load_data(self, dataset): train_data = dataset["train"] for item in train_data.select(range(len(train_data))): text = item["text"] if not text or len(text.strip()) < 10: continue lines = text.splitlines() title_lines = [] found_arxiv = False arxiv_id = None for line in lines: line_strip = line.strip() if not found_arxiv and line_strip.lower().startswith("arxiv:"): found_arxiv = True match = re.search(r'arxiv:\d{4}\.\d{4,5}v\d', line_strip, flags=re.IGNORECASE) if match: arxiv_id = match.group(0).lower() elif not found_arxiv: title_lines.append(line_strip) else: if line_strip.lower().startswith("abstract"): break title = " ".join(title_lines).strip() self.raw_texts.append(text.strip()) self.titles.append(title) self.documents.append(text.strip()) self.arxiv_ids.append(arxiv_id) def plot_dense(self, embedding, pca, results_indices): all_indices = list(set(results_indices) | set(range(min(5000, embedding.shape[0])))) all_data = embedding[all_indices] pca.fit(all_data) reduced_data = pca.transform(embedding[:5000]) reduced_results_points = pca.transform(embedding[results_indices]) if len(results_indices) > 0 else np.empty((0, 3)) query_point = pca.transform(self.query_encoding) if self.query_encoding is not None and self.query_encoding.shape[0] > 0 else np.empty((0, 3)) return reduced_data, reduced_results_points, query_point def plot_3d_embeddings(self): # Example: plot random points, replace with your embeddings pca = PCA(n_components=3) results_indices = [i[0] for i in self.last_results] if self.embedding == "tfidf": all_indices = list(set(results_indices) | set(range(min(5000, self.tfidf_matrix.shape[0])))) all_data = self.tfidf_matrix[all_indices].toarray() pca.fit(all_data) reduced_data = pca.transform(self.tfidf_matrix[:5000].toarray()) reduced_results_points = pca.transform(self.tfidf_matrix[results_indices].toarray()) if len(results_indices) > 0 else np.empty((0, 3)) elif self.embedding == "word2vec": reduced_data, reduced_results_points, query_point = self.plot_dense(self.word2vec_embeddings, pca, results_indices) elif self.embedding == "bert": reduced_data, reduced_results_points, query_point = self.plot_dense(self.bert_embeddings, pca, results_indices) elif self.embedding == "sbert" or self.embedding == "clustered sbert": reduced_data, reduced_results_points, query_point = self.plot_dense(self.sbert_embedding, pca, results_indices) if self.embedding == "clustered sbert": cluster_colors = ["#00b7ff" if i in np.where(self.clusters == self.top_cluster_index)[0] else "#ffffff" for i in range(len(self.documents))] # elif self.embedding == "scibert": # reduced_data, reduced_results_points, query_point = self.plot_dense(self.scibert_embeddings, pca, results_indices) else: raise ValueError(f"Unsupported embedding type: {self.embedding}") results_scores = [i[1] for i in self.last_results] traces = [] trace = go.Scatter3d( x=reduced_data[:, 0], y=reduced_data[:, 1], z=reduced_data[:, 2], mode='markers', marker=dict(size=3.5, color="#ffffff" if self.embedding != "clustered sbert" else cluster_colors, opacity=0.2), name='All Documents', text=[f"
: {self.arxiv_ids[i] if self.arxiv_ids[i] else self.documents[i].split()[:10]}" for i in range(len(self.documents))], hoverinfo='text' ) traces.append(trace) layout = go.Layout( margin=dict(l=0, r=0, b=0, t=0), scene=dict( xaxis_title='PCA 1', yaxis_title='PCA 2', zaxis_title='PCA 3', xaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'), yaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'), zaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'), ), paper_bgcolor='black', # Outside the plotting area plot_bgcolor='black', # Plotting area font=dict(color='white'), # Axis and legend text legend=dict( bgcolor='rgba(0,0,0,0)', # Transparent legend background bordercolor='rgba(0,0,0,0)', # No border x=0.01, # Place legend inside plot area (adjust as needed) y=0.99, xanchor='left', yanchor='top' ) ) if len(reduced_results_points) > 0: custom_colorscale = [ [0.0, "#00ffea"], # Start color (e.g., bright cyan) [1.0, "#ffea00"], # End color (e.g., bright yellow) ] results_trace = go.Scatter3d( x=reduced_results_points[:, 0], y=reduced_results_points[:, 1], z=reduced_results_points[:, 2], mode='markers', marker=dict(size=4.25, color=results_scores, colorscale=custom_colorscale, opacity=0.99, colorbar=dict( title="Score", bgcolor='rgba(0,0,0,0)', # <-- Transparent background for colorbar bordercolor='rgba(0,0,0,0)' # No border ) ), name='Results', text=[f"
{self.documents[i][:100]}" for i in results_indices], hoverinfo='text' ) traces.append(results_trace) if not self.embedding == "tfidf" and self.query_encoding is not None and self.query_encoding.shape[0] > 0: query_trace = go.Scatter3d( x=query_point[:, 0], y=query_point[:, 1], z=query_point[:, 2], mode='markers', marker=dict(size=5, color='red', opacity=0.8), name='Query', text=[f"
Query: {self.query}"], hoverinfo='text' ) traces.append(query_trace) fig = go.Figure(data=traces, layout=layout) return fig def keyword_match_ranking(self, query, top_n=10): query_terms = query.lower().split() query_indices = [i for i, term in enumerate(self.feature_names) if term in query_terms] if not query_indices: return [] scores = [] for doc_idx in range(self.tfidf_matrix.shape[0]): doc_vector = self.tfidf_matrix[doc_idx] doc_score = sum(doc_vector[0, i] for i in query_indices) if doc_score > 0: scores.append((doc_idx, doc_score)) scores.sort(key=lambda x: x[1], reverse=True) return scores[:top_n] def word2vec_search(self, query, top_n=10): tokens = [word for word in query.split() if word in self.wv_model.key_to_index] if not tokens: return [] vectors = np.array([self.wv_model[word] for word in tokens]) query_vec = np.mean(vectors, axis=0).reshape(1, -1) self.query_encoding = query_vec sims = cosine_similarity(query_vec, self.word2vec_embeddings).flatten() top_indices = sims.argsort()[::-1][:top_n] return [(i, sims[i]) for i in top_indices] def bert_search(self, query, top_n=10): with torch.no_grad(): inputs = self.tokenizer((query+' ')*2, return_tensors="pt", truncation=True, max_length=512, padding='max_length') outputs = self.model(**inputs) query_vec = outputs.last_hidden_state[:, 0, :].numpy() self.query_encoding = query_vec sims = cosine_similarity(query_vec, self.bert_embeddings).flatten() top_indices = sims.argsort()[::-1][:top_n] print(f"sim, top_indices: {sims}, {top_indices}") return [(i, sims[i]) for i in top_indices] # def scibert_search(self, query, top_n=10): # with torch.no_grad(): # inputs = self.sci_tokenizer(query, return_tensors="pt", truncation=True, padding=True, max_length=512) # outputs = self.sci_model(**inputs) # query_vec = outputs.last_hidden_state[:, 0, :].numpy() # self.query_encoding = query_vec # sims = cosine_similarity(query_vec, self.scibert_embeddings).flatten() # top_indices = sims.argsort()[::-1][:top_n] # print(f"sim, top_indices: {sims}, {top_indices}") # return [(i, sims[i]) for i in top_indices] def sbert_search(self, query, top_n=10): query_vec = self.sbert_model.encode([query]) self.query_encoding = query_vec cos_scores = cosine_similarity(query_vec, self.sbert_embedding)[0] top_k_indices = np.argsort(cos_scores)[-50:][::-1] candidates = [dataset['train'][int(i)]['text'] for i in top_k_indices] scores = self.cross_encoder.predict([(query, doc) for doc in candidates]) final_scores = 0.7 * scores + 0.3 * cos_scores[top_k_indices] top_indices = top_k_indices[final_scores.argsort()[::-1][:top_n]] print(f"sim, top_indices: {final_scores}, {top_indices}") return [(top_k_indices[i], final_scores[i]) for i in final_scores.argsort()[::-1][:top_n]] def clustered_sbert_search(self, query, top_n=10): query_vec = self.sbert_model.encode([query]) self.query_encoding = query_vec # Store the query encoding for plotting cos_cluster_scores = cosine_similarity(query_vec, self.cluster_centers)[0] # Get cosine similarity with cluster centers self.top_cluster_index = np.argmax(cos_cluster_scores) # Get the index of the top cluster cos_scores = cosine_similarity(query_vec, self.clustered_embeddings[self.top_cluster_index])[0] # Get cosine similarity within the top cluster top_k_indices = np.argsort(cos_scores)[-50:][::-1] # Get top 50 indices within the top cluster (cluster internal indices) top_full_dataset_indices = np.where(self.clusters == self.top_cluster_index)[0][top_k_indices] # Get the 50 indices that correspond to the full dataset candidates = [self.dataset['train'][int(i)]['text'] for i in top_full_dataset_indices] # Get the 50 candidate documents scores = self.cross_encoder.predict([(query, doc) for doc in candidates]) # Get the 50 cross-encoder scores for the candidates final_scores = 0.7 * scores + 0.3 * cos_scores[top_k_indices] # Combine the 50 cross-encoder scores with the cosine similarity scores top_indices = top_k_indices[final_scores.argsort()[::-1][:top_n]] # Get the top N cluster internal indices based on the final scores top_indices_full = np.where(self.clusters == self.top_cluster_index)[0][top_indices] # Get the top N full dataset indices based on the final scores print(f"sim, top_indices: {final_scores}, {top_indices}") return [(i, final_scores[j]) for j, i in enumerate(top_indices_full)] def model_switch(self, embedding, progress=gr.Progress()): if self.embedding != embedding: old_embedding = self.embedding print(f"Switching model to {embedding}") self.load_model(embedding) print(f"Loaded {embedding} model") self.embedding = embedding if old_embedding == "tfidf": del self.tfidf_matrix del self.feature_names if old_embedding == "word2vec": del self.word2vec_embeddings del self.wv_model if old_embedding == "bert": del self.bert_embeddings del self.tokenizer del self.model if old_embedding == "scibert": del self.scibert_embeddings del self.sci_tokenizer del self.sci_model if old_embedding == "sbert": del self.sbert_model del self.sbert_embedding del self.cross_encoder print(f"old embedding removed") if hasattr(self, "query") and self.query: return self.search_function(self.query, self.embedding) else: return "" # Or a message like "Model switched. Please enter a query." return gr.update() # No change if embedding is the same def load_model(self, embedding): self.embedding = embedding if self.embedding == "tfidf": self.tfidf_matrix = load_npz("TF-IDF embeddings/tfidf_matrix_train.npz") with open("TF-IDF embeddings/feature_names.txt", "r") as f: self.feature_names = [line.strip() for line in f.readlines()] elif self.embedding == "word2vec": # Use trimmed model here self.word2vec_embeddings = np.load("Word2Vec embeddings/word2vec_embedding.npz")["word2vec_embedding"] self.wv_model = KeyedVectors.load("models/word2vec-trimmed.model") elif self.embedding == "bert": self.bert_embeddings = np.load("BERT embeddings/bert_embedding.npz")["bert_embedding"] self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') self.model = BertModel.from_pretrained('bert-base-uncased') self.model.eval() # elif self.embedding == "scibert": # self.scibert_embeddings = np.load("SciBERT_embeddings/scibert_embedding.npz")["bert_embedding"] # self.sci_tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased') # self.sci_model = AutoModel.from_pretrained('allenai/scibert_scivocab_uncased') # self.sci_model.eval() elif self.embedding == "sbert" or self.embedding == "clustered sbert": self.sbert_model = SentenceTransformer("all-MiniLM-L6-v2") self.sbert_embedding = np.load("BERT embeddings/sbert_embedding.npz")["sbert_embedding"] # self.cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2") self.cross_encoder = CrossEncoder("cross-encoder/ms-marco-TinyBERT-L-2-v2") if self.embedding == "clustered sbert": self.clusters = pd.read_csv(f'raf_clusters/cluster_labels_sbert.csv')['cluster_label'].values self.cluster_centers = pd.read_csv(f'BERT embeddings/sbert_cluster_centers.csv').values self.clustered_embeddings = [self.sbert_embedding[self.clusters == i] for i in np.unique(self.clusters)] else: raise ValueError(f"Unsupported embedding type: {self.embedding}") def snippet_before_abstract(self, text): pattern = re.compile(r'a\s*b\s*s\s*t\s*r\s*a\s*c\s*t|i\s*n\s*t\s*r\s*o\s*d\s*u\s*c\s*t\s*i\s*o\s*n', re.IGNORECASE) match = pattern.search(text) if match: return text[:match.start()].strip() if match.start() < 1000 else text[:100].strip() else: return text[:300].strip() def set_embedding(self, embedding): self.embedding = embedding def search_function(self, query, embedding, progress=gr.Progress()): self.set_embedding(embedding) self.query = query query = query.encode().decode('unicode_escape') # Interpret escape sequences search_methods = { "tfidf": self.keyword_match_ranking, "word2vec": self.word2vec_search, "bert": self.bert_search, # "scibert": self.scibert_search, # Uncomment if implemented "sbert": self.sbert_search, "clustered sbert": self.clustered_sbert_search, } results = search_methods.get(self.embedding, lambda q: [])(query) if not results: self.last_results = [] return "No results found." if results: self.last_results = results output = "" display_rank = 1 for idx, score in results: if not self.arxiv_ids[idx]: output += f"### Document {display_rank}\n" output += f"
{self.documents[idx][:200]}
\n\n" else: link = f"https://arxiv.org/abs/{self.arxiv_ids[idx].replace('arxiv:', '')}" snippet = self.snippet_before_abstract(self.documents[idx]).replace('\n', '
') output += f"### Document {display_rank}\n" output += f"[arXiv Link]({link})\n\n" output += f"
{snippet}
\n\n---\n" display_rank += 1 return output if __name__ == "__main__": dataset = load_dataset("ccdv/arxiv-classification", "no_ref") # replace with your dataset search_engine = ArxivSearch(dataset) search_engine.iface.launch()