Spaces:
Sleeping
Sleeping
DeepseekV1
Browse files
app.py
CHANGED
@@ -1,138 +1,87 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
please check the docs:
|
9 |
-
https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
10 |
-
"""
|
11 |
-
|
12 |
-
# ----------------------------------------------------------------
|
13 |
-
# CONFIGURACIÓN DE SERPER (búsqueda web)
|
14 |
-
# ----------------------------------------------------------------
|
15 |
-
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
|
16 |
-
|
17 |
-
def do_websearch(query: str) -> str:
|
18 |
-
"""
|
19 |
-
Llama a serper.dev para hacer la búsqueda en Google y devolver
|
20 |
-
un texto resumido de los resultados.
|
21 |
-
"""
|
22 |
-
if not SERPER_API_KEY:
|
23 |
-
return "(SERPER_API_KEY no está configurado)"
|
24 |
-
|
25 |
-
url = "https://google.serper.dev/search"
|
26 |
-
headers = {
|
27 |
-
"X-API-KEY": SERPER_API_KEY,
|
28 |
-
"Content-Type": "application/json",
|
29 |
-
}
|
30 |
-
payload = {"q": query}
|
31 |
-
|
32 |
-
try:
|
33 |
-
resp = requests.post(url, json=payload, headers=headers, timeout=10)
|
34 |
-
data = resp.json()
|
35 |
-
except Exception as e:
|
36 |
-
return f"(Error al llamar a serper.dev: {e})"
|
37 |
-
|
38 |
-
# Se espera un campo 'organic' con resultados
|
39 |
-
if "organic" not in data:
|
40 |
-
return "No se encontraron resultados en serper.dev."
|
41 |
-
|
42 |
-
results = data["organic"]
|
43 |
-
if not results:
|
44 |
-
return "No hay resultados relevantes."
|
45 |
-
|
46 |
-
text = []
|
47 |
-
for i, item in enumerate(results, start=1):
|
48 |
-
title = item.get("title", "Sin título")
|
49 |
-
link = item.get("link", "Sin enlace")
|
50 |
-
text.append(f"{i}. {title}\n {link}")
|
51 |
-
|
52 |
-
return "\n".join(text)
|
53 |
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
def respond(
|
61 |
message,
|
62 |
history: list[tuple[str, str]],
|
63 |
-
system_message,
|
64 |
-
max_tokens,
|
65 |
-
temperature,
|
66 |
-
top_p,
|
67 |
-
use_search # <-- Nuevo parámetro: si está "activado" el botón
|
68 |
):
|
69 |
"""
|
70 |
- system_message: Texto del rol "system"
|
71 |
-
- history:
|
72 |
- message: Mensaje actual del usuario
|
73 |
-
|
74 |
"""
|
75 |
|
76 |
-
#
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
#
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
# ----------------------------------------------------------------
|
100 |
-
response = ""
|
101 |
-
for chunk in client.chat_completion(
|
102 |
-
messages,
|
103 |
-
max_tokens=max_tokens,
|
104 |
-
stream=True,
|
105 |
temperature=temperature,
|
106 |
top_p=top_p,
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
"
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
"py-1",
|
126 |
-
"px-2",
|
127 |
-
"rounded",
|
128 |
-
"cursor-pointer"
|
129 |
-
]
|
130 |
-
|
131 |
-
# ChatInterface, con un input Checkbox para "🌐 Búsqueda"
|
132 |
demo = gr.ChatInterface(
|
133 |
fn=respond,
|
134 |
additional_inputs=[
|
135 |
gr.Textbox(
|
|
|
136 |
value=(
|
137 |
"Eres Juan, un asistente virtual en español. "
|
138 |
"Debes responder con mucha paciencia y empatía a usuarios que "
|
@@ -140,37 +89,13 @@ demo = gr.ChatInterface(
|
|
140 |
"Provee explicaciones simples, procura entender la intención del usuario "
|
141 |
"aunque la frase esté mal escrita, y mantén siempre un tono amable."
|
142 |
),
|
143 |
-
label="Mensaje del sistema",
|
144 |
-
),
|
145 |
-
gr.Slider(
|
146 |
-
minimum=1,
|
147 |
-
maximum=2048,
|
148 |
-
value=512,
|
149 |
-
step=1,
|
150 |
-
label="Máxima cantidad de tokens"
|
151 |
-
),
|
152 |
-
gr.Slider(
|
153 |
-
minimum=0.1,
|
154 |
-
maximum=4.0,
|
155 |
-
value=0.7,
|
156 |
-
step=0.1,
|
157 |
-
label="Temperatura"
|
158 |
-
),
|
159 |
-
gr.Slider(
|
160 |
-
minimum=0.1,
|
161 |
-
maximum=1.0,
|
162 |
-
value=0.95,
|
163 |
-
step=0.05,
|
164 |
-
label="Top-p (muestreo por núcleo)",
|
165 |
-
),
|
166 |
-
# Un checkbox que hace de "toggle" para la búsqueda
|
167 |
-
gr.Checkbox(
|
168 |
-
value=False, # Por defecto desactivado
|
169 |
-
label="🌐 Búsqueda", # Etiqueta
|
170 |
-
elem_classes=tailwind_toggle_classes
|
171 |
),
|
|
|
|
|
|
|
172 |
],
|
173 |
)
|
174 |
|
175 |
if __name__ == "__main__":
|
|
|
176 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
import gradio as gr
|
4 |
+
from transformers import (
|
5 |
+
AutoTokenizer,
|
6 |
+
AutoModelForCausalLM,
|
7 |
+
TextIteratorStreamer,
|
8 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# 1) Cargamos el tokenizer y el modelo de deepseek-ai/DeepSeek-R1-Distill-Llama-8B
|
11 |
+
print("Cargando tokenizer...")
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
|
13 |
|
14 |
+
print("Cargando modelo (puede tardar varios minutos)...")
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
17 |
+
device_map="auto", # Para usar GPU si está disponible
|
18 |
+
torch_dtype=torch.float16 # Usa float16 en GPU; en CPU, cambia a float32
|
19 |
+
)
|
20 |
+
model.eval()
|
21 |
|
22 |
def respond(
|
23 |
message,
|
24 |
history: list[tuple[str, str]],
|
25 |
+
system_message: str,
|
26 |
+
max_tokens: int,
|
27 |
+
temperature: float,
|
28 |
+
top_p: float,
|
|
|
29 |
):
|
30 |
"""
|
31 |
- system_message: Texto del rol "system"
|
32 |
+
- history: Historial [(user_message, assistant_reply), ...]
|
33 |
- message: Mensaje actual del usuario
|
34 |
+
Genera una respuesta en streaming usando transformers.TextIteratorStreamer
|
35 |
"""
|
36 |
|
37 |
+
# Construimos un prompt concatenando 'system_message', 'history' y el nuevo 'message'
|
38 |
+
# Esto es un ejemplo de formateo sencillo. Ajusta según tu preferencia de estilo chat.
|
39 |
+
prompt = f"[SYSTEM] {system_message}\n"
|
40 |
+
for (usr, bot) in history:
|
41 |
+
if usr:
|
42 |
+
prompt += f"[USER] {usr}\n"
|
43 |
+
if bot:
|
44 |
+
prompt += f"[ASSISTANT] {bot}\n"
|
45 |
+
prompt += f"[USER] {message}\n[ASSISTANT]"
|
46 |
+
|
47 |
+
# Usamos TextIteratorStreamer para obtener tokens a medida que se generan
|
48 |
+
streamer = TextIteratorStreamer(
|
49 |
+
tokenizer=tokenizer,
|
50 |
+
skip_special_tokens=True
|
51 |
+
)
|
52 |
+
|
53 |
+
# Preparamos argumentos para model.generate
|
54 |
+
# (similar a pipeline pero de bajo nivel)
|
55 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
56 |
+
generation_kwargs = dict(
|
57 |
+
**inputs,
|
58 |
+
streamer=streamer,
|
59 |
+
max_new_tokens=max_tokens,
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
temperature=temperature,
|
61 |
top_p=top_p,
|
62 |
+
do_sample=True, # para permitir sampling
|
63 |
+
# repetition_penalty=1.0, # ajusta si lo deseas
|
64 |
+
)
|
65 |
+
|
66 |
+
# Lanzamos la generación en un hilo
|
67 |
+
generation_thread = torch.Thread(
|
68 |
+
target=model.generate,
|
69 |
+
kwargs=generation_kwargs
|
70 |
+
)
|
71 |
+
generation_thread.start()
|
72 |
+
|
73 |
+
# Leemos tokens a medida que se generan y yield
|
74 |
+
output_text = ""
|
75 |
+
for new_token in streamer:
|
76 |
+
output_text += new_token
|
77 |
+
yield output_text
|
78 |
+
|
79 |
+
# Interfaz con ChatInterface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
demo = gr.ChatInterface(
|
81 |
fn=respond,
|
82 |
additional_inputs=[
|
83 |
gr.Textbox(
|
84 |
+
label="Mensaje del sistema",
|
85 |
value=(
|
86 |
"Eres Juan, un asistente virtual en español. "
|
87 |
"Debes responder con mucha paciencia y empatía a usuarios que "
|
|
|
89 |
"Provee explicaciones simples, procura entender la intención del usuario "
|
90 |
"aunque la frase esté mal escrita, y mantén siempre un tono amable."
|
91 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
),
|
93 |
+
gr.Slider(1, 2048, 512, 1, label="Máxima cantidad de tokens"),
|
94 |
+
gr.Slider(0.1, 4.0, 0.7, 0.1, label="Temperatura"),
|
95 |
+
gr.Slider(0.1, 1.0, 0.95, 0.05, label="Top-p (muestreo por núcleo)"),
|
96 |
],
|
97 |
)
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
+
print("Iniciando servidor Gradio...")
|
101 |
demo.launch()
|