File size: 13,042 Bytes
6ec92ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86af462
6ec92ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']

import gradio as gr
import pandas as pd
import re
import pandas as pd
import numpy as np
from collections import defaultdict
from constants import *
import os
from huggingface_hub import Repository
import json


global data_component, filter_component


TOKEN = os.environ.get("TOKEN")
repo = Repository(local_dir="./download_from_dataset", clone_from="JMMMU/leaderboard_result", repo_type="dataset", use_auth_token=TOKEN)

current_directory = os.getcwd()


def validate_model_size(s):
    pattern = r'^\d+B$|^-$'
    if re.match(pattern, s):
        return s
    else:
        return '-'


def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths


def get_acc(data, subject_list):
    acc = 0
    for subject in subject_list:
        acc += data["results"][subject]['jmmmu_acc,none']
    acc = acc/len(subject_list)
    acc = acc * 100
    acc = round(acc, 1)
    return acc


def calculate_score(input_file):
    json_string = input_file.decode('utf-8')
    data = json.loads(json_string)
    result_dict = {}

    overall = data["results"]["jmmmu"]['jmmmu_acc,none']*100
    ca = data["results"]["culture_agnostic"]['jmmmu_acc,none']*100
    cs = data["results"]["culture_specific"]['jmmmu_acc,none']*100
    overall = round(overall, 1)
    ca = round(ca, 1)
    cs = round(cs, 1)
    # Art_Psychology
    art_psychology_subject_list = ["jmmmu_design", "jmmmu_music", "jmmmu_psychology"]
    # Science
    science_subject_list = ["jmmmu_biology", "jmmmu_chemistry", "jmmmu_physics", "jmmmu_math"]
    # Business
    business_subject_list = ["jmmmu_accounting", "jmmmu_economics", "jmmmu_finance", "jmmmu_manage", "jmmmu_marketing"]
    # Medicine
    medicine_subject_list = ["jmmmu_basic_medical_science", "jmmmu_clinical_medicine", "jmmmu_diagnostics_and_laboratory_medicine", "jmmmu_pharmacy", "jmmmu_public_health"]
    # Tech_Eng.
    tech_eng_subject_list = ["jmmmu_agriculture", "jmmmu_architecture_and_engineering", "jmmmu_computer_science", "jmmmu_electronics", "jmmmu_energy_and_power", "jmmmu_materials", "jmmmu_mechanical_engineering"]

    jmmmu_japanese_art_subject_list = ["jmmmu_japanese_art"]
    jmmmu_japanese_heritage_subject_list = ["jmmmu_japanese_heritage"]
    jmmmu_japanese_history_subject_list = ["jmmmu_japanese_history"]
    jmmmu_world_history_subject_list = ["jmmmu_world_history"]

    art_psychology = get_acc(data, art_psychology_subject_list)
    science = get_acc(data, science_subject_list)
    business = get_acc(data, business_subject_list)
    medicine = get_acc(data, medicine_subject_list)
    tech_eng = get_acc(data, tech_eng_subject_list)
    japanese_art = get_acc(data, jmmmu_japanese_art_subject_list)
    japanese_heritage = get_acc(data, jmmmu_japanese_heritage_subject_list)
    japanese_history = get_acc(data, jmmmu_japanese_history_subject_list)
    world_history = get_acc(data, jmmmu_world_history_subject_list)

    result_dict =\
        {
            "overall": overall,
            "cultureSpecific": cs,
            "cultureAgnostic": ca,
            "japaneseArt": japanese_art,
            "japaneseHeritage": japanese_heritage,
            "japaneseHistory": japanese_history,
            "worldHistory": world_history,
            "artPsychology": art_psychology,
            "business": business,
            "science": science,
            "healthMedicine": medicine,
            "techEngineering": tech_eng
        }
    return result_dict


def add_new_eval(
    input_file,
    model_type: str,
    model_name_textbox: str,
    revision_name_textbox: str,
    model_link: str,
    model_size: str,
    # upd_type: str,
    # question_type: str

):

    if input_file is None:
        warning_text = "Error! Empty file!"
        print(warning_text)
        return warning_text
    else:
        model_size = validate_model_size(model_size)
        # if upd_type == 'AAD':
        csv_path = CSV_RESULT_PATH

        # validity_check(input_file)

        csv_data = pd.read_csv(csv_path)

        result_dict = calculate_score(input_file)

        if revision_name_textbox == '':
            col = csv_data.shape[0]
            model_name = model_name_textbox
        else:
            model_name = revision_name_textbox
            model_name_list = csv_data['Model']
            name_list = [name.split(']')[0][1:] for name in model_name_list]
            if revision_name_textbox not in name_list:
                col = csv_data.shape[0]
            else:
                col = name_list.index(revision_name_textbox)    
        model_name_wo_link = model_name
        if model_link == '':
            model_name = model_name  # no url
        else:
            model_name = '[' + model_name + '](' + model_link + ')'

        # add new data
        new_data = [
            model_type,
            model_name,
            model_size,
            result_dict["overall"],
            result_dict["cultureSpecific"],
            result_dict["cultureAgnostic"],
            result_dict["japaneseArt"],
            result_dict["japaneseHeritage"],
            result_dict["japaneseHistory"],
            result_dict["worldHistory"],
            result_dict["artPsychology"],
            result_dict["business"],
            result_dict["science"],
            result_dict["healthMedicine"],
            result_dict["techEngineering"]
            ]

        # If the same data already exists, return an error.
        if new_data in csv_data.values.tolist():
            warning_text = "Error! The same data already exists!"
            print(warning_text)
            return warning_text
        # If the same model name already exists, return an error.
        elif new_data[:5] in csv_data.values.tolist():
            warning_text = "Error! The same data already exists! Please fill revision_name."
            print(warning_text)
            return warning_text

        csv_data.loc[col] = new_data
        csv_data = csv_data.to_csv(csv_path, index=False)

        absolute_result_path = os.path.abspath(csv_path)
        if not os.path.exists(absolute_result_path):
            raise FileNotFoundError(f"File {absolute_result_path} not found")

        repo.git_pull()
        repo.git_add(absolute_result_path)

        save_path = os.path.join(CSV_QUEUE_DIR, f"{model_name_wo_link}.json")
        with open(save_path, "wb") as f:
            f.write(input_file)

        absolute_queue_path = os.path.abspath(save_path)

        repo.git_add(absolute_queue_path)
        repo.git_commit(f"add {model_name_wo_link} results")
        repo.git_push()
        print(f"Success! Your {model_name_wo_link} has been added!")

    return 0


def get_baseline_df():
    repo.git_pull()
    df = pd.read_csv(CSV_RESULT_PATH)
    df = df.sort_values(by="Overall", ascending=False)
    present_columns = MODEL_INFO + checkbox_group.value
    df = df[present_columns]
    return df


def get_all_df():
    repo.git_pull()
    df = pd.read_csv(CSV_RESULT_PATH)
    df = df.sort_values(by="Overall", ascending=False)
    return df



block = gr.Blocks()


with block:
    gr.Markdown(
        LEADERBORAD_INTRODUCTION
    )
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # table jmmmu bench
        with gr.TabItem("πŸ… JMMMU Benchmark", elem_id="jmmmu-benchmark-tab-table", id=1):
            # selection for column part:
            checkbox_group = gr.CheckboxGroup(
                choices=TASK_INFO,
                value=AVG_INFO,
                label="Evaluation Dimension",
                interactive=True,
            ) # user can select the evaluation dimension

            with gr.Row():
                # selection for model size part:
                model_size = gr.CheckboxGroup(
                    choices=MODEL_SIZE,
                    value=MODEL_SIZE,
                    label="Model Size",
                    interactive=True,
                )

            baseline_value = get_baseline_df()
            baseline_header = MODEL_INFO + checkbox_group.value
            baseline_datatype = ['markdown'] * 2 + ['number'] * len(checkbox_group.value)

            data_component = gr.components.Dataframe(
                value=baseline_value,
                headers=baseline_header,
                type="pandas",
                datatype=baseline_datatype,
                interactive=False,
                visible=True,
                )

            def on_filter_model_size_method_change(selected_model_size, selected_columns):

                updated_data = get_all_df()
                # model_size

                def custom_filter(row, model_size_filters):
                    model_size = row['Model Size']
                    model_size = model_size.upper()

                    if model_size == '-':
                        size_filter = '-' in model_size_filters
                    elif 'B' in model_size:
                        size = float(model_size.replace('B', ''))
                        size_filter = ('>=10B' in model_size_filters and size >= 10) or ('<10B' in model_size_filters and size < 10)
                    else:
                        size_filter = False

                    return size_filter

                mask = updated_data.apply(custom_filter, axis=1, model_size_filters=selected_model_size)
                updated_data = updated_data[mask]

                # columns:
                selected_columns = [item for item in TASK_INFO if item in selected_columns]
                present_columns = MODEL_INFO + selected_columns
                updated_data = updated_data[present_columns]
                updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
                updated_headers = present_columns
                update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]

                filter_component = gr.components.Dataframe(
                    value=updated_data,
                    headers=updated_headers,
                    type="pandas",
                    datatype=update_datatype,
                    interactive=False,
                    visible=True,
                    )
                return filter_component


            model_size.change(fn=on_filter_model_size_method_change, inputs=[model_size, checkbox_group], outputs=data_component)
            checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[model_size, checkbox_group], outputs=data_component)

        # table 5
        with gr.TabItem("πŸš€ Submit here! ", elem_id="jmmmu-benchmark-tab-table", id=5):
            with gr.Row():
                gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model evaluation json file here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_type = gr.Dropdown(
                        choices=["LMM", "LLM"],
                        label="Model type",
                        multiselect=False,
                        value="LMM",
                        interactive=True,
                    )
                    model_name_textbox = gr.Textbox(
                        label="Model name", placeholder="LLaMA-7B"
                        )
                    revision_name_textbox = gr.Textbox(
                        label="Revision Model Name", placeholder="LLaMA-7B"
                    )
                    model_link = gr.Textbox(
                        label="Model Link", placeholder="https://huggingface.co/decapoda-research/llama-7b-hf"
                    )
                    model_size = gr.Textbox(
                        label="Model size", placeholder="7B(Input content format must be 'number+B' or '-', default is '-')"
                    )


            with gr.Column():
                input_file = gr.components.File(label="Click to Upload a JSON File", file_count="single", type='binary')
                submit_button = gr.Button("Submit Eval")

                submission_result = gr.Markdown()
                submit_button.click(
                    add_new_eval,
                    inputs = [
                        input_file,
                        model_type,
                        model_name_textbox,
                        revision_name_textbox,
                        model_link,
                        model_size
                    ],
                )

    def refresh_data():
        value = get_baseline_df()

        return value

    with gr.Row():
        data_run = gr.Button("Refresh")
        data_run.click(
            refresh_data, outputs=[data_component]
        )

    with gr.Accordion("Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            show_copy_button=True,
        )

block.launch()