File size: 21,587 Bytes
6d6e4bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import streamlit as st
import pandas as pd

uploaded_file = st.file_uploader("Choose product file", type="csv")

if uploaded_file:
    #df = pd.read_excel(uploaded_file)
    df = pd.read_csv(uploaded_file, encoding='utf8')
    #st.dataframe(df)

uploaded_file2 = st.file_uploader("Choose inventory file", type="csv")

if uploaded_file2:
    #df2 = pd.read_excel(uploaded_file2)
    df2 = pd.read_csv(uploaded_file2, encoding='utf8')
    
    #st.dataframe(df2)
    
    #st.table(df2)

def ConvertCitrus(df,df2):
    # Load pandas
    import re as re
    import RemoveHTMLtags as RHT
    #INPUT FILE

    #df = pd.read_csv('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/products_export_1 21-10-22.csv', encoding='utf8')


    #df2 = pd.read_csv('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/inventory_export_1 21-10-22.csv', encoding='utf8')
    df.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/products_export_1.xlsx',index=False)
    df2.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/inventory_export_1.xlsx',index=False)

    tagsp=str('<style type=')+str('"')+str('"')+str('text/css')+str('"')+str('"')+str('><!--')
    tags_list = ['<p class=','"p1"', 'data-mce-fragment="1">,','<b data-mce-fragment="1">','<i data-mce-fragment="1">','<p>' ,'</p>' , '<p*>',
                  '<ul>','</ul>',
                  '</i>','</b>','</p>','</br>',
                  '<li>','</li>',
                  '<br>',
                  '<strong>','</strong>',
                  '<span*>','</span>', '"utf-8"','UTF-8',
                  '<a href*>','</a>','<meta charset=utf-8>',';;',
                  '<em>','</em>','"','<meta charset=','utf-8>','<p>','<p','data-mce-fragment=1',';','<style type=','<style type=','><!--','text/css','<style type=\"\"text/css\"\"><!--','--></style>','td {border: 1px solid #ccc','}br {mso-data-placement:same-cell','}','>']




    def remove_html_tags(text):
        """Remove html tags from a string"""
        import re
        clean = re.compile('<.*?>')
        return re.sub(clean, '', text)
    #for tag in tags_list:
    ##      df['overview_copy'] = df['overview_copy'].str.replace(tag, '')
    #   df.replace(to_replace=tag, value='', regex=True, inplace=True)

    for index, row in df.iterrows():
        df.iloc[index,2]=RHT.remove_tags(str(df.iloc[index,2]))

    print(df.iloc[:,2])

    df.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/products_export_1-nohtml.xlsx')

    #df.fillna('', inplace=True)
    df.iloc[:,2] = pd.Series(df.iloc[:,2],dtype="string")
    print(df.iloc[:,2].dtype)
    #s = pd.Series(['a', 'b', 'c'], dtype="string")
    #s.dtype

    #CONVERT FORMATS

    #Column A(0) – Ignore
    #Column B(1) “Title” > Column B(1) “Product Name”
    #Column C(2) – Ignore
    #Column D(3) “Vendor” > Column K(10) “Brand”
    #Column F(5) “Custom Product Type” > Column AF(31) “Short Description”
    #Column J(9) “Option1 Value” > Column I(8) “Size 1”
    #Column L(11) “Option2 Value” > Column H(7) > Colour
    #Column M(12) - Ignore
    #Column N(13) “Option 3 Value” > Column A(0) “Style Number”
    #1.	Problems in Column N.  Some codes do not stay as a number when the Citrus Lime csv is re-opened (8.05652E+12 instead of 8056516179091) The saved csv keeps turning this column back to “general’ format column when I re-open it, even after I save it as number column. The upload must keep this as a number formatted column.
 
    #Column O(14) - Ignore
    #Column P(15) “Variant Grams” > Column AE (30) “Weight (grams)”
    #Column R(17) “Variant Inventory  Qty” > Column R (17) “Stock Count”. THIS IS THE KEY TO THE DAILY UPLOAD
    #Column U(20) “Variant Price” > Column F (5) “Unit MSRP”

    #Column Y > C&D
    #################################################################################################
    temp_cols=df.columns.tolist()
    new_cols=temp_cols.copy()
    new_cols[1]=temp_cols[1]

    new_cols[17]=temp_cols[17]

    #################################################################################################
    #THERE IS NO EXISTING COLUMN ON THE SHOPIFY EXPORT TO DIRECTLY PROVIDE DATA FOR COLUMN E ON THE CITRUS LIME CSV (which is the wholesale price ex VAT to the retailer). However – Column U “ Variant Price” can provide the information for Column E with the following formula:
 
    #((Column U/1.2)/1.6)*0.96
 
    #Column Y “Variant Barcode” > Column C “Vendor SKU” (2) (and D "UPC/EAN" (3)??)
 
    #There are 2 problems with converting Column Y to Column C.  
    #2.	Shopify exports the UPC data and adds an apostrophe. This fails the SIM process. We need to get data without the apostrophe.
    #3.	Vendor SKU.  The CSV file keeps switching the data to a non-number eg 8056516178308 shows as 8.05652E+12. The saved csv keeps turning this column to “general’ format column when I re-open it, even after I save it as number column. The upload must keep this as a number formatted column.
 
    #This is where it gets complicated…
 
    #Shopify exports the image file as https:// links in an odd way. Instead of attributing image 1, image 2, and image 3 etc in dedicated and separate columns, it spreads them across the sizes for the related product in the same column (Column Z “Image Src”). Column AA in the Shopify export csv just shows the image position instead.  We need to find a solution. We need to be able to provide https// image links in separate columns for each product and size. For example, if a product has 3 images, these need to be converted into Citrus Lime CSV columns Column Z “Image 1”, Column AA “Image 2”, Column AB “Image 3”, Column AC “Image 4” etc.
    #new_cols[4]=((temp_cols[20]/1.2)/1.96)*0.96

    #Column C “Body (HTML)” > Column AG “Long Description” (32)


    df_copy=df[new_cols].copy(deep=True)
    print("SKU")
    print(df.iloc[:,24])

    local_df = df.copy(deep=True)

    df_copy.iloc[:,0]=local_df.iloc[:,13].copy(deep=True)
    df_copy.iloc[:,5]=local_df.iloc[:,20].copy(deep=True)
    df_copy.iloc[:,7]=local_df.iloc[:,11].copy(deep=True)
    #24 is variant Bar code
    df_copy.iloc[:,2]=local_df.iloc[:,24].copy(deep=True)

    df_copy.iloc[:,8]=local_df.iloc[:,9].copy(deep=True)
    df_copy.iloc[:,10]=local_df.iloc[:,3].copy(deep=True)
    df_copy.rename(columns={df_copy.columns[10]: 'Brand'},inplace=True)
    df_copy.columns.values[10] = 'Brand'

    df_copy.iloc[:,30]=local_df.iloc[:,15].copy(deep=True)
    df_copy.iloc[:,31]=local_df.iloc[:,5].copy(deep=True)
    df_copy.iloc[:,32]=local_df.iloc[:,2].copy(deep=True)

    df_copy.rename(columns={df_copy.columns[8]: 'Size 1'},inplace=True)

    print(list(df_copy.columns.values))

    #WE CONVERT COLUMN 20 to numeric (in case it's read as string)
    df_copy.iloc[:,20] = df_copy.iloc[:,20].astype(float)

    df_copy.iloc[:,4]=(((df_copy.iloc[:,20]/1.2)/1.96)*0.96)
    from babel.numbers import format_currency
    df_copy.iloc[:,4] = df_copy.iloc[:,4].apply(lambda x: format_currency(x, currency="GBP", locale="en_GB"))
    df_copy.iloc[:,5] = df_copy.iloc[:,5].apply(lambda x: format_currency(x, currency="GBP", locale="en_GB"))

    print(((df_copy.iloc[:,20]/1.2)/1.96)*0.96)
    #df_copy.iloc[:,2]=df_copy.iloc[:,2].str.replace("'","")
    df_copy.iloc[:,2] = df_copy.iloc[:,2].astype(str).str.replace("'","")


    #df_copy.iloc[:,24]=df_copy.iloc[:,24].str.replace("'","")
    df_copy.iloc[:,24] = df_copy.iloc[:,24].astype(str).str.replace("'","")

    print("SKU")
    print(df_copy.iloc[:,2])






    #rename specific column names

    #df_copy.rename(columns = {'Variant Inventory Qty':'Stock Count','Variant Grams' : 'Weight (grams)'}, inplace = True)

    #df_copy.rename(columns = {'Option2 Value':'Colour','Option1 Value' : 'Size 1'}, inplace = True)

    #df_copy.rename(columns = {'Vendor':'Brand','Title' : 'Product Name'}, inplace = True)
    #df_copy.rename(columns = {'Body (HTML)':'Long Description'}, inplace = True)

    #df_copy.rename(columns={df_copy.columns[4]: 'Unit Cost'},inplace=True)


    print(list(df_copy.columns.values))


    #df_copy.rename(columns={df_copy.columns[31]: 'Short Description'},inplace=True)
    #df_copy.rename(columns={df_copy.columns[2]: 'Vendor SKU'},inplace=True)
    df_copy.rename(columns={df_copy.columns[6]: 'Colour Code (Simple Colour)'},inplace=True)
    ##IN COLUMN H (6), WE HAVE SOME TAGS AND WE WANT TO GET THE TAG "MEN, WOMEN, LADY OR BOTH (UNISEX)"
    #WE ARE GETTING THAT INFO BEFORE REMOVING DATA FROM 6
    for index, row in df_copy.iterrows():
        if index==0:
            print(row['Colour Code (Simple Colour)'])
        if " mens" in str(row['Colour Code (Simple Colour)']):
            if " womens" in str(row['Colour Code (Simple Colour)']):
                df_copy.iloc[index,12]="Unisex"
            else:
                df_copy.iloc[index,12]="Mens"
            
        if " womens" in str(row['Colour Code (Simple Colour)']):
            if " mens" in str(row['Colour Code (Simple Colour)']):
                df_copy.iloc[index,12]="Unisex"
            else:
                df_copy.iloc[index,12]="Womens"
        if " ladys" in str(row['Colour Code (Simple Colour)']):
                df_copy.iloc[index,12]="Ladys"
        if index==0:
            print(row[12])
    print(df_copy.iloc[:,12])



    df_copy.iloc[:,6] = ""
    #Style Number	Product Name	Vendor SKU	UPC/EAN	Unit Cost	Unit MSRP 	Colour Code (Simple Colour)	Colour	
    df_copy.rename(columns={df_copy.columns[0]: 'Style Number'},inplace=True)
    df_copy.rename(columns={df_copy.columns[1]: 'Product Name'},inplace=True)
    df_copy.rename(columns={df_copy.columns[2]: 'Vendor SKU'},inplace=True)
    df_copy.rename(columns={df_copy.columns[3]: 'UPC/EAN'},inplace=True)
    df_copy.rename(columns={df_copy.columns[4]: 'Unit Cost'},inplace=True)
    df_copy.rename(columns={df_copy.columns[5]: 'Unit MSRP'},inplace=True)
    df_copy.rename(columns={df_copy.columns[6]: 'Colour Code (Simple Colour)'},inplace=True)
    print(df_copy.columns[6])
    df_copy.rename(columns={df_copy.columns[7]: 'Colour'},inplace=True)
    #Size 1	Size 2	Brand 	Year or Season	Gender	Manufacturer Part Code	Other Barcode	VAT	Pack Qty	
    df_copy.rename(columns={df_copy.columns[8]: 'Size 1'},inplace=True)
    df_copy.rename(columns={df_copy.columns[9]: 'Size 2'},inplace=True)
    df_copy.rename(columns={df_copy.columns[10]: 'Brand'},inplace=True)
    df_copy.rename(columns={df_copy.columns[11]: 'Year of Season'},inplace=True)
    df_copy.rename(columns={df_copy.columns[12]: 'Gender'},inplace=True)
    df_copy.rename(columns={df_copy.columns[13]: 'Manufacturer Part Code'},inplace=True)
    df_copy.rename(columns={df_copy.columns[14]: 'Other Bar Code'},inplace=True)
    df_copy.rename(columns={df_copy.columns[15]: 'VAT'},inplace=True)
    df_copy.rename(columns={df_copy.columns[16]: 'Pack Qty'},inplace=True)
    #Stock Count	Price Band 1	Price Band 2 	IE VAT	Unit Cost in Euros	MSRP in Euros	
    df_copy.rename(columns={df_copy.columns[17]: 'Stock Count'},inplace=True)
    df_copy.rename(columns={df_copy.columns[18]: 'Price Band 1'},inplace=True)
    df_copy.rename(columns={df_copy.columns[19]: 'Price Band 2'},inplace=True)
    df_copy.rename(columns={df_copy.columns[20]: 'IE VAT'},inplace=True)
    df_copy.rename(columns={df_copy.columns[21]: 'Unit Cost in Euros'},inplace=True)
    df_copy.rename(columns={df_copy.columns[22]: 'MSRP in Euros'},inplace=True)
    #Commodity Codes	Country of Origin	Image (multiple images can be added in separate columns if available)	
    df_copy.rename(columns={df_copy.columns[23]: 'Commodity Codes'},inplace=True)
    df_copy.rename(columns={df_copy.columns[24]: 'Country of Origin'},inplace=True)
    #Weight	Short Description	Long Description	Video Link		
    df_copy.rename(columns={df_copy.columns[30]: 'Weight'},inplace=True)
    df_copy.rename(columns={df_copy.columns[31]: 'Short Description'},inplace=True)
    df_copy.rename(columns={df_copy.columns[32]: 'Long Description'},inplace=True)
    df_copy.rename(columns={df_copy.columns[33]: 'Video Link'},inplace=True)







    df_copy.iloc[:,9] = ""

    df_copy.iloc[:,13] = ""

    df_copy.iloc[:,14] = ""

    df_copy.iloc[:,16] = ""

    df_copy.iloc[:,18] = ""

    df_copy.iloc[:,19] = ""

    df_copy.iloc[:,20] = ""

    df_copy.iloc[:,21] = ""

    df_copy.iloc[:,22] = ""
    #df_copy.rename(columns={df_copy.columns[26]: 'Weight (Grams)'},inplace=True)

    #df_copy.iloc[:,26] = ""

    df_copy.iloc[:,33] = ""



    #df_copy.iloc[:,5] = " "
    df_copy.iloc[:,15] = "20"

    print(list(df_copy.columns.values))

    #Column Y in the export and this code should go into both Columns C and D in the conversion with the titles “Vendor SKU” and  “UPC/EAN” It is replicated for a complicated reason that I won’t explain here, but Column Y in the export should go into both Column C and D in the conversion
    df_copy.iloc[:,3] = df_copy.iloc[:,2]
    df_copy.columns.values[10] = 'Brand'
    df_copy.iloc[:,11] = ""
    df_copy.iloc[:,22] = ""
    #df_copy.rename(columns={df_copy.columns[30]: 'Weight (Grams)'},inplace=True)


    print("SKU")
    print(df_copy.iloc[:,2])


    #DATA COMING FROM THE OTHER CSV FILE

    df_copy.iloc[:,23] = ""


    df_copy.iloc[:,24] = ""

    #WARNING: HEADER IS IN SECOND ROW. WE DONT HAVE INTO ACCOUNT FIRST ROW
    #df2 = pd.read_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/inventory_export_12.xlsx',engine="openpyxl", header=1)


    #WE HAVE TO REORDER COLUMNS COO and HS Code in df2 in order to match the index order of df 
    #list1=df_copy.set_index('Vendor SKU').T.to_dict('list')
    #print(list1)
    new_index=df['Variant SKU']
    boolean = df['Variant SKU'].duplicated().any()
    #print(boolean)
    boolean = df2['SKU'].duplicated().any()
    #print(boolean)
    duplicateRows2 = df2[df2.duplicated(['SKU'],keep = False)]
    #print(duplicateRows2['SKU'])

    duplicateRows = df[df.duplicated(['Variant SKU'],keep = False)]
    #print(duplicateRows)
    #print(duplicateRows['Variant SKU'])
    #print(new_index)
    df2=df2.set_index('SKU')
    #print(df2)
    #i=df2.index
    #for x in i:
    #    print(x)
    df2.reindex(new_index)
    #i=df2.index
    #for x in i:
    #    print(x)
    #print(df2)
    #print(df2.index)
    #df3 = pd.DataFrame(students, index=['a', 'b', 'c', 'd', 'e'])
    #print("Original DataFrame: ")
    #print(df)








    print("TERMINE")

    df_copy.iloc[:,24] = df2.loc[:,'COO']
    df_copy.iloc[:,23] = df2.loc[:,'HS Code']

    df_copy['Commodity Codes']=df2['HS Code'].values
    df_copy['Country of Origin']=df2['COO'].values


    #print(df2.loc[:,'COO'])
    #print(df2.loc[:,'HS Code'])
    #print(df_copy.iloc[:,24])
    #print(df_copy.iloc[:,23])
    print("SKU")
    print(df_copy.iloc[:,2])



    #WE COMPLETE THE DATAFRMAE WITH DUMMY COLUMNS TILL THE MAXIMUM DESIRED NUMBER
    header_list=[]
    for i in range(49,58):
        #df.insert(i, "Dummy", [], True)
        header_list.append(str(i))
        df_copy[str(i)]=''



    column_indices=[]
    for i in range(0,24):
        column_indices.append(34+i)

    #Tech Specs	Size Chart	Geometry Chart	Frame	Rear Shock	Fork
    #Headset	Stem	Handlebar	Bar Tape / Grip	Brakes Levers	Brake Calipers	Tyres	Wheels	Front Derailleur	
    #Rear Derailleur	Shift Levers	Chain	Cassette	Chainset	Bottom Bracket	Pedals	Saddle	Seatpost

    old_names = df_copy.columns[column_indices]
    new_names = ['Tech Specs','Size Chart','Geometry Chart','Frame',	'Rear Shock',	'Fork',	'Headset',	'Stem',	'Handlebar',	'Bar Tape / Grip',	'Brakes Levers',	'Brake Calipers',	'Tyres',	'Wheels',	'Front Derailleur',	'Rear Derailleur',	'Shift Levers'	,'Chain'	,'Cassette'	,'Chainset'	,'Bottom Bracket',	'Pedals',	'Saddle',	'Seatpost']
    old_names = df_copy.columns[column_indices]
    df_copy.rename(columns=dict(zip(old_names, new_names)), inplace=True)


    df_copy.iloc[:,34:58]=''


    print("SKUf")
    print(df_copy.iloc[:,2])
    #print(df_copy.iloc[:,3])

    ## Rename all columns with list
    #cols = ['Courses','Courses_Fee','Courses_Duration']
    #df_copy.columns = cols
    #print(df.columns)


    ###################
    #PUT IMAGES IN A SIGNLE ROW: WE LOOK FOR IMAGES COMING FROM COMMON NAMES
    #Shopify exports the image file as https:// links in an odd way. Instead of attributing image 1, image 2, and image 3 etc in dedicated 
    #and separate columns, it spreads them across the sizes for the related product in the same column (Column Z “Image Src”). 
    #Column AA in the Shopify export csv just shows the image position instead.  We need to find a solution. 
    #We need to be able to provide https// image links in separate columns for each product and size. For example, if a product has 3 images, 
    #these need to be converted into Citrus Lime CSV columns Column Z “Image 1”, Column AA “Image 2”, Column AB “Image 3”, Column AC “Image 4” 
    #etc
    ####################
    #region imagesRow2Column
    #We get the list of rows with NAN data in Product Name column (same product name but different sizes (XS, XL...). Each of these rows has a image scr link
    list_col=df_copy.loc[pd.isna(df_copy.loc[:,'Product Name']), :].index
    images=df_copy.loc[list_col,'Image Src']
    list_end=[]
    for row in df_copy.index:
        #NotNA gets rows where Product Name column has a name in it (first image and row where we should add the images)
        if pd.notna(df_copy.loc[row,'Product Name']):
            #print(df_copy.loc[row,'Product Name'])
            rowNotNa=row
            i=1
            #j=1
            list_img=[]  
            #WE INCLUDE IN THE LIST THE FIRST IMAGE
            list_img.append(df_copy.loc[row,'Image Src'])
            while pd.isna(df_copy.loc[row+i,'Product Name']) and row+i<len(df_copy.index)-1:
                #WE ADD THE REST OF THE IMAGES (FOLLOWING ROWS)
                if "http" in str(df_copy.loc[row+i,'Image Src']):
                    list_img.append(df_copy.loc[row+i,'Image Src'])      
                i=i+1
            list_end.append(list_img)

    #IN list_end WE HAVE ALL OF THE IMAGES FOR EACH PRODUCT NAME
    index_nonnan=df_copy.loc[pd.notna(df_copy.loc[:,'Product Name']), :].index
    max=0
    for i in range(len(list_end)):
        if max<len(list_end[i]):
            max=len(list_end[i])
    print("SKUf")
    print(df_copy.iloc[:,2])

    #WE CHANGE THE COLUMN NAME OF THE COLUMNS WHERE THERE ARE IMAGES: EACH COLUMN IS CALLED "Image x"
    #We first delete old values in the Image columns
    for j in range(max):
            df_copy.iloc[:,25+j]=''

    counter=0
    for index in index_nonnan:   
        for j in range(len(list_end[counter])):
       
        
            if list_end[counter][j]!='nan':
                df_copy.iloc[index,25+j]=list_end[counter][j]
                df_copy.rename(columns={df_copy.columns[25+j]: 'Image'+str(j+1)},inplace=True)

        counter=counter+1
    print("SKUf")
    print(df_copy.iloc[:,2])
    #WE HAVE TO FILL NAN ROWS (SAME PRODUCT BUT DIFFERENT SIZES) WITH THE SAME IMAGES THAT IN NON NAN ROWS (MAIN PRODUCT-SIZE)
    listImages=[None] * max
    list1=[None] * max
    list2=[None] * max
    list3=[None] * max
    list4=[None] * max
    list5=[None] * max
    for index, row in df_copy.iterrows():
        #NotNA gets rows where Product Name column has a name in it (first image and row where we should add the images)
        #print(df_copy.iloc[index,1])
        if pd.notna(df_copy.iloc[index,1]):
            for j in range(0,max):
                listImages[j]=str((df_copy.iloc[index,25+j]))
                #list1[j]=str((df_copy.iloc[index,1+j]))
                #list2[j]=str((df_copy.iloc[index,10+j]))
                #list3[j]=str((df_copy.iloc[index,12+j]))
                #list4[j]=str((df_copy.iloc[index,31+j]))
                #list5[j]=str((df_copy.iloc[index,32+j]))
                list1[j]=str((df_copy.iloc[index,1]))
                list2[j]=str((df_copy.iloc[index,10]))
                list3[j]=str((df_copy.iloc[index,12]))
                list4[j]=str((df_copy.iloc[index,31]))
                list5[j]=str((df_copy.iloc[index,32]))
            
        else:
            for j in range(0,max):
                df_copy.iloc[index,25+j]=listImages[j]
                #df_copy.iloc[index,1+j]=list1[j]
                #df_copy.iloc[index,10+j]=list2[j]
                #df_copy.iloc[index,12+j]=list3[j]
                #df_copy.iloc[index,31+j]=list4[j]
                #df_copy.iloc[index,32+j]=list5[j]
                df_copy.iloc[index,1]=list1[j]
                df_copy.iloc[index,10]=list2[j]
                df_copy.iloc[index,12]=list3[j]
                df_copy.iloc[index,31]=list4[j]
                df_copy.iloc[index,32]=list5[j]

    #endregion

    print("SKUf")
    print(df_copy.iloc[:,2])
    #print(df_copy.iloc[:,3])

    ###################################################################################
    df_copy.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/OCCHIO-Cycle-Data-File_st.xlsx',index=False)



    #df_copy.to_csv('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/OCCHIO-Cycle-Data-File.csv',index=False, encoding='utf-8')
    df_copy.to_csv('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/OCCHIO-Cycle-Data-File_st.csv',index=False, encoding='utf_8_sig')


if uploaded_file and uploaded_file2:
    ConvertCitrus(df,df2)