Spaces:
Sleeping
Sleeping
File size: 21,587 Bytes
6d6e4bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
import streamlit as st
import pandas as pd
uploaded_file = st.file_uploader("Choose product file", type="csv")
if uploaded_file:
#df = pd.read_excel(uploaded_file)
df = pd.read_csv(uploaded_file, encoding='utf8')
#st.dataframe(df)
uploaded_file2 = st.file_uploader("Choose inventory file", type="csv")
if uploaded_file2:
#df2 = pd.read_excel(uploaded_file2)
df2 = pd.read_csv(uploaded_file2, encoding='utf8')
#st.dataframe(df2)
#st.table(df2)
def ConvertCitrus(df,df2):
# Load pandas
import re as re
import RemoveHTMLtags as RHT
#INPUT FILE
#df = pd.read_csv('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/products_export_1 21-10-22.csv', encoding='utf8')
#df2 = pd.read_csv('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/inventory_export_1 21-10-22.csv', encoding='utf8')
df.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/products_export_1.xlsx',index=False)
df2.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/inventory_export_1.xlsx',index=False)
tagsp=str('<style type=')+str('"')+str('"')+str('text/css')+str('"')+str('"')+str('><!--')
tags_list = ['<p class=','"p1"', 'data-mce-fragment="1">,','<b data-mce-fragment="1">','<i data-mce-fragment="1">','<p>' ,'</p>' , '<p*>',
'<ul>','</ul>',
'</i>','</b>','</p>','</br>',
'<li>','</li>',
'<br>',
'<strong>','</strong>',
'<span*>','</span>', '"utf-8"','UTF-8',
'<a href*>','</a>','<meta charset=utf-8>',';;',
'<em>','</em>','"','<meta charset=','utf-8>','<p>','<p','data-mce-fragment=1',';','<style type=','<style type=','><!--','text/css','<style type=\"\"text/css\"\"><!--','--></style>','td {border: 1px solid #ccc','}br {mso-data-placement:same-cell','}','>']
def remove_html_tags(text):
"""Remove html tags from a string"""
import re
clean = re.compile('<.*?>')
return re.sub(clean, '', text)
#for tag in tags_list:
## df['overview_copy'] = df['overview_copy'].str.replace(tag, '')
# df.replace(to_replace=tag, value='', regex=True, inplace=True)
for index, row in df.iterrows():
df.iloc[index,2]=RHT.remove_tags(str(df.iloc[index,2]))
print(df.iloc[:,2])
df.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/products_export_1-nohtml.xlsx')
#df.fillna('', inplace=True)
df.iloc[:,2] = pd.Series(df.iloc[:,2],dtype="string")
print(df.iloc[:,2].dtype)
#s = pd.Series(['a', 'b', 'c'], dtype="string")
#s.dtype
#CONVERT FORMATS
#Column A(0) – Ignore
#Column B(1) “Title” > Column B(1) “Product Name”
#Column C(2) – Ignore
#Column D(3) “Vendor” > Column K(10) “Brand”
#Column F(5) “Custom Product Type” > Column AF(31) “Short Description”
#Column J(9) “Option1 Value” > Column I(8) “Size 1”
#Column L(11) “Option2 Value” > Column H(7) > Colour
#Column M(12) - Ignore
#Column N(13) “Option 3 Value” > Column A(0) “Style Number”
#1. Problems in Column N. Some codes do not stay as a number when the Citrus Lime csv is re-opened (8.05652E+12 instead of 8056516179091) The saved csv keeps turning this column back to “general’ format column when I re-open it, even after I save it as number column. The upload must keep this as a number formatted column.
#Column O(14) - Ignore
#Column P(15) “Variant Grams” > Column AE (30) “Weight (grams)”
#Column R(17) “Variant Inventory Qty” > Column R (17) “Stock Count”. THIS IS THE KEY TO THE DAILY UPLOAD
#Column U(20) “Variant Price” > Column F (5) “Unit MSRP”
#Column Y > C&D
#################################################################################################
temp_cols=df.columns.tolist()
new_cols=temp_cols.copy()
new_cols[1]=temp_cols[1]
new_cols[17]=temp_cols[17]
#################################################################################################
#THERE IS NO EXISTING COLUMN ON THE SHOPIFY EXPORT TO DIRECTLY PROVIDE DATA FOR COLUMN E ON THE CITRUS LIME CSV (which is the wholesale price ex VAT to the retailer). However – Column U “ Variant Price” can provide the information for Column E with the following formula:
#((Column U/1.2)/1.6)*0.96
#Column Y “Variant Barcode” > Column C “Vendor SKU” (2) (and D "UPC/EAN" (3)??)
#There are 2 problems with converting Column Y to Column C.
#2. Shopify exports the UPC data and adds an apostrophe. This fails the SIM process. We need to get data without the apostrophe.
#3. Vendor SKU. The CSV file keeps switching the data to a non-number eg 8056516178308 shows as 8.05652E+12. The saved csv keeps turning this column to “general’ format column when I re-open it, even after I save it as number column. The upload must keep this as a number formatted column.
#This is where it gets complicated…
#Shopify exports the image file as https:// links in an odd way. Instead of attributing image 1, image 2, and image 3 etc in dedicated and separate columns, it spreads them across the sizes for the related product in the same column (Column Z “Image Src”). Column AA in the Shopify export csv just shows the image position instead. We need to find a solution. We need to be able to provide https// image links in separate columns for each product and size. For example, if a product has 3 images, these need to be converted into Citrus Lime CSV columns Column Z “Image 1”, Column AA “Image 2”, Column AB “Image 3”, Column AC “Image 4” etc.
#new_cols[4]=((temp_cols[20]/1.2)/1.96)*0.96
#Column C “Body (HTML)” > Column AG “Long Description” (32)
df_copy=df[new_cols].copy(deep=True)
print("SKU")
print(df.iloc[:,24])
local_df = df.copy(deep=True)
df_copy.iloc[:,0]=local_df.iloc[:,13].copy(deep=True)
df_copy.iloc[:,5]=local_df.iloc[:,20].copy(deep=True)
df_copy.iloc[:,7]=local_df.iloc[:,11].copy(deep=True)
#24 is variant Bar code
df_copy.iloc[:,2]=local_df.iloc[:,24].copy(deep=True)
df_copy.iloc[:,8]=local_df.iloc[:,9].copy(deep=True)
df_copy.iloc[:,10]=local_df.iloc[:,3].copy(deep=True)
df_copy.rename(columns={df_copy.columns[10]: 'Brand'},inplace=True)
df_copy.columns.values[10] = 'Brand'
df_copy.iloc[:,30]=local_df.iloc[:,15].copy(deep=True)
df_copy.iloc[:,31]=local_df.iloc[:,5].copy(deep=True)
df_copy.iloc[:,32]=local_df.iloc[:,2].copy(deep=True)
df_copy.rename(columns={df_copy.columns[8]: 'Size 1'},inplace=True)
print(list(df_copy.columns.values))
#WE CONVERT COLUMN 20 to numeric (in case it's read as string)
df_copy.iloc[:,20] = df_copy.iloc[:,20].astype(float)
df_copy.iloc[:,4]=(((df_copy.iloc[:,20]/1.2)/1.96)*0.96)
from babel.numbers import format_currency
df_copy.iloc[:,4] = df_copy.iloc[:,4].apply(lambda x: format_currency(x, currency="GBP", locale="en_GB"))
df_copy.iloc[:,5] = df_copy.iloc[:,5].apply(lambda x: format_currency(x, currency="GBP", locale="en_GB"))
print(((df_copy.iloc[:,20]/1.2)/1.96)*0.96)
#df_copy.iloc[:,2]=df_copy.iloc[:,2].str.replace("'","")
df_copy.iloc[:,2] = df_copy.iloc[:,2].astype(str).str.replace("'","")
#df_copy.iloc[:,24]=df_copy.iloc[:,24].str.replace("'","")
df_copy.iloc[:,24] = df_copy.iloc[:,24].astype(str).str.replace("'","")
print("SKU")
print(df_copy.iloc[:,2])
#rename specific column names
#df_copy.rename(columns = {'Variant Inventory Qty':'Stock Count','Variant Grams' : 'Weight (grams)'}, inplace = True)
#df_copy.rename(columns = {'Option2 Value':'Colour','Option1 Value' : 'Size 1'}, inplace = True)
#df_copy.rename(columns = {'Vendor':'Brand','Title' : 'Product Name'}, inplace = True)
#df_copy.rename(columns = {'Body (HTML)':'Long Description'}, inplace = True)
#df_copy.rename(columns={df_copy.columns[4]: 'Unit Cost'},inplace=True)
print(list(df_copy.columns.values))
#df_copy.rename(columns={df_copy.columns[31]: 'Short Description'},inplace=True)
#df_copy.rename(columns={df_copy.columns[2]: 'Vendor SKU'},inplace=True)
df_copy.rename(columns={df_copy.columns[6]: 'Colour Code (Simple Colour)'},inplace=True)
##IN COLUMN H (6), WE HAVE SOME TAGS AND WE WANT TO GET THE TAG "MEN, WOMEN, LADY OR BOTH (UNISEX)"
#WE ARE GETTING THAT INFO BEFORE REMOVING DATA FROM 6
for index, row in df_copy.iterrows():
if index==0:
print(row['Colour Code (Simple Colour)'])
if " mens" in str(row['Colour Code (Simple Colour)']):
if " womens" in str(row['Colour Code (Simple Colour)']):
df_copy.iloc[index,12]="Unisex"
else:
df_copy.iloc[index,12]="Mens"
if " womens" in str(row['Colour Code (Simple Colour)']):
if " mens" in str(row['Colour Code (Simple Colour)']):
df_copy.iloc[index,12]="Unisex"
else:
df_copy.iloc[index,12]="Womens"
if " ladys" in str(row['Colour Code (Simple Colour)']):
df_copy.iloc[index,12]="Ladys"
if index==0:
print(row[12])
print(df_copy.iloc[:,12])
df_copy.iloc[:,6] = ""
#Style Number Product Name Vendor SKU UPC/EAN Unit Cost Unit MSRP Colour Code (Simple Colour) Colour
df_copy.rename(columns={df_copy.columns[0]: 'Style Number'},inplace=True)
df_copy.rename(columns={df_copy.columns[1]: 'Product Name'},inplace=True)
df_copy.rename(columns={df_copy.columns[2]: 'Vendor SKU'},inplace=True)
df_copy.rename(columns={df_copy.columns[3]: 'UPC/EAN'},inplace=True)
df_copy.rename(columns={df_copy.columns[4]: 'Unit Cost'},inplace=True)
df_copy.rename(columns={df_copy.columns[5]: 'Unit MSRP'},inplace=True)
df_copy.rename(columns={df_copy.columns[6]: 'Colour Code (Simple Colour)'},inplace=True)
print(df_copy.columns[6])
df_copy.rename(columns={df_copy.columns[7]: 'Colour'},inplace=True)
#Size 1 Size 2 Brand Year or Season Gender Manufacturer Part Code Other Barcode VAT Pack Qty
df_copy.rename(columns={df_copy.columns[8]: 'Size 1'},inplace=True)
df_copy.rename(columns={df_copy.columns[9]: 'Size 2'},inplace=True)
df_copy.rename(columns={df_copy.columns[10]: 'Brand'},inplace=True)
df_copy.rename(columns={df_copy.columns[11]: 'Year of Season'},inplace=True)
df_copy.rename(columns={df_copy.columns[12]: 'Gender'},inplace=True)
df_copy.rename(columns={df_copy.columns[13]: 'Manufacturer Part Code'},inplace=True)
df_copy.rename(columns={df_copy.columns[14]: 'Other Bar Code'},inplace=True)
df_copy.rename(columns={df_copy.columns[15]: 'VAT'},inplace=True)
df_copy.rename(columns={df_copy.columns[16]: 'Pack Qty'},inplace=True)
#Stock Count Price Band 1 Price Band 2 IE VAT Unit Cost in Euros MSRP in Euros
df_copy.rename(columns={df_copy.columns[17]: 'Stock Count'},inplace=True)
df_copy.rename(columns={df_copy.columns[18]: 'Price Band 1'},inplace=True)
df_copy.rename(columns={df_copy.columns[19]: 'Price Band 2'},inplace=True)
df_copy.rename(columns={df_copy.columns[20]: 'IE VAT'},inplace=True)
df_copy.rename(columns={df_copy.columns[21]: 'Unit Cost in Euros'},inplace=True)
df_copy.rename(columns={df_copy.columns[22]: 'MSRP in Euros'},inplace=True)
#Commodity Codes Country of Origin Image (multiple images can be added in separate columns if available)
df_copy.rename(columns={df_copy.columns[23]: 'Commodity Codes'},inplace=True)
df_copy.rename(columns={df_copy.columns[24]: 'Country of Origin'},inplace=True)
#Weight Short Description Long Description Video Link
df_copy.rename(columns={df_copy.columns[30]: 'Weight'},inplace=True)
df_copy.rename(columns={df_copy.columns[31]: 'Short Description'},inplace=True)
df_copy.rename(columns={df_copy.columns[32]: 'Long Description'},inplace=True)
df_copy.rename(columns={df_copy.columns[33]: 'Video Link'},inplace=True)
df_copy.iloc[:,9] = ""
df_copy.iloc[:,13] = ""
df_copy.iloc[:,14] = ""
df_copy.iloc[:,16] = ""
df_copy.iloc[:,18] = ""
df_copy.iloc[:,19] = ""
df_copy.iloc[:,20] = ""
df_copy.iloc[:,21] = ""
df_copy.iloc[:,22] = ""
#df_copy.rename(columns={df_copy.columns[26]: 'Weight (Grams)'},inplace=True)
#df_copy.iloc[:,26] = ""
df_copy.iloc[:,33] = ""
#df_copy.iloc[:,5] = " "
df_copy.iloc[:,15] = "20"
print(list(df_copy.columns.values))
#Column Y in the export and this code should go into both Columns C and D in the conversion with the titles “Vendor SKU” and “UPC/EAN” It is replicated for a complicated reason that I won’t explain here, but Column Y in the export should go into both Column C and D in the conversion
df_copy.iloc[:,3] = df_copy.iloc[:,2]
df_copy.columns.values[10] = 'Brand'
df_copy.iloc[:,11] = ""
df_copy.iloc[:,22] = ""
#df_copy.rename(columns={df_copy.columns[30]: 'Weight (Grams)'},inplace=True)
print("SKU")
print(df_copy.iloc[:,2])
#DATA COMING FROM THE OTHER CSV FILE
df_copy.iloc[:,23] = ""
df_copy.iloc[:,24] = ""
#WARNING: HEADER IS IN SECOND ROW. WE DONT HAVE INTO ACCOUNT FIRST ROW
#df2 = pd.read_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/inventory_export_12.xlsx',engine="openpyxl", header=1)
#WE HAVE TO REORDER COLUMNS COO and HS Code in df2 in order to match the index order of df
#list1=df_copy.set_index('Vendor SKU').T.to_dict('list')
#print(list1)
new_index=df['Variant SKU']
boolean = df['Variant SKU'].duplicated().any()
#print(boolean)
boolean = df2['SKU'].duplicated().any()
#print(boolean)
duplicateRows2 = df2[df2.duplicated(['SKU'],keep = False)]
#print(duplicateRows2['SKU'])
duplicateRows = df[df.duplicated(['Variant SKU'],keep = False)]
#print(duplicateRows)
#print(duplicateRows['Variant SKU'])
#print(new_index)
df2=df2.set_index('SKU')
#print(df2)
#i=df2.index
#for x in i:
# print(x)
df2.reindex(new_index)
#i=df2.index
#for x in i:
# print(x)
#print(df2)
#print(df2.index)
#df3 = pd.DataFrame(students, index=['a', 'b', 'c', 'd', 'e'])
#print("Original DataFrame: ")
#print(df)
print("TERMINE")
df_copy.iloc[:,24] = df2.loc[:,'COO']
df_copy.iloc[:,23] = df2.loc[:,'HS Code']
df_copy['Commodity Codes']=df2['HS Code'].values
df_copy['Country of Origin']=df2['COO'].values
#print(df2.loc[:,'COO'])
#print(df2.loc[:,'HS Code'])
#print(df_copy.iloc[:,24])
#print(df_copy.iloc[:,23])
print("SKU")
print(df_copy.iloc[:,2])
#WE COMPLETE THE DATAFRMAE WITH DUMMY COLUMNS TILL THE MAXIMUM DESIRED NUMBER
header_list=[]
for i in range(49,58):
#df.insert(i, "Dummy", [], True)
header_list.append(str(i))
df_copy[str(i)]=''
column_indices=[]
for i in range(0,24):
column_indices.append(34+i)
#Tech Specs Size Chart Geometry Chart Frame Rear Shock Fork
#Headset Stem Handlebar Bar Tape / Grip Brakes Levers Brake Calipers Tyres Wheels Front Derailleur
#Rear Derailleur Shift Levers Chain Cassette Chainset Bottom Bracket Pedals Saddle Seatpost
old_names = df_copy.columns[column_indices]
new_names = ['Tech Specs','Size Chart','Geometry Chart','Frame', 'Rear Shock', 'Fork', 'Headset', 'Stem', 'Handlebar', 'Bar Tape / Grip', 'Brakes Levers', 'Brake Calipers', 'Tyres', 'Wheels', 'Front Derailleur', 'Rear Derailleur', 'Shift Levers' ,'Chain' ,'Cassette' ,'Chainset' ,'Bottom Bracket', 'Pedals', 'Saddle', 'Seatpost']
old_names = df_copy.columns[column_indices]
df_copy.rename(columns=dict(zip(old_names, new_names)), inplace=True)
df_copy.iloc[:,34:58]=''
print("SKUf")
print(df_copy.iloc[:,2])
#print(df_copy.iloc[:,3])
## Rename all columns with list
#cols = ['Courses','Courses_Fee','Courses_Duration']
#df_copy.columns = cols
#print(df.columns)
###################
#PUT IMAGES IN A SIGNLE ROW: WE LOOK FOR IMAGES COMING FROM COMMON NAMES
#Shopify exports the image file as https:// links in an odd way. Instead of attributing image 1, image 2, and image 3 etc in dedicated
#and separate columns, it spreads them across the sizes for the related product in the same column (Column Z “Image Src”).
#Column AA in the Shopify export csv just shows the image position instead. We need to find a solution.
#We need to be able to provide https// image links in separate columns for each product and size. For example, if a product has 3 images,
#these need to be converted into Citrus Lime CSV columns Column Z “Image 1”, Column AA “Image 2”, Column AB “Image 3”, Column AC “Image 4”
#etc
####################
#region imagesRow2Column
#We get the list of rows with NAN data in Product Name column (same product name but different sizes (XS, XL...). Each of these rows has a image scr link
list_col=df_copy.loc[pd.isna(df_copy.loc[:,'Product Name']), :].index
images=df_copy.loc[list_col,'Image Src']
list_end=[]
for row in df_copy.index:
#NotNA gets rows where Product Name column has a name in it (first image and row where we should add the images)
if pd.notna(df_copy.loc[row,'Product Name']):
#print(df_copy.loc[row,'Product Name'])
rowNotNa=row
i=1
#j=1
list_img=[]
#WE INCLUDE IN THE LIST THE FIRST IMAGE
list_img.append(df_copy.loc[row,'Image Src'])
while pd.isna(df_copy.loc[row+i,'Product Name']) and row+i<len(df_copy.index)-1:
#WE ADD THE REST OF THE IMAGES (FOLLOWING ROWS)
if "http" in str(df_copy.loc[row+i,'Image Src']):
list_img.append(df_copy.loc[row+i,'Image Src'])
i=i+1
list_end.append(list_img)
#IN list_end WE HAVE ALL OF THE IMAGES FOR EACH PRODUCT NAME
index_nonnan=df_copy.loc[pd.notna(df_copy.loc[:,'Product Name']), :].index
max=0
for i in range(len(list_end)):
if max<len(list_end[i]):
max=len(list_end[i])
print("SKUf")
print(df_copy.iloc[:,2])
#WE CHANGE THE COLUMN NAME OF THE COLUMNS WHERE THERE ARE IMAGES: EACH COLUMN IS CALLED "Image x"
#We first delete old values in the Image columns
for j in range(max):
df_copy.iloc[:,25+j]=''
counter=0
for index in index_nonnan:
for j in range(len(list_end[counter])):
if list_end[counter][j]!='nan':
df_copy.iloc[index,25+j]=list_end[counter][j]
df_copy.rename(columns={df_copy.columns[25+j]: 'Image'+str(j+1)},inplace=True)
counter=counter+1
print("SKUf")
print(df_copy.iloc[:,2])
#WE HAVE TO FILL NAN ROWS (SAME PRODUCT BUT DIFFERENT SIZES) WITH THE SAME IMAGES THAT IN NON NAN ROWS (MAIN PRODUCT-SIZE)
listImages=[None] * max
list1=[None] * max
list2=[None] * max
list3=[None] * max
list4=[None] * max
list5=[None] * max
for index, row in df_copy.iterrows():
#NotNA gets rows where Product Name column has a name in it (first image and row where we should add the images)
#print(df_copy.iloc[index,1])
if pd.notna(df_copy.iloc[index,1]):
for j in range(0,max):
listImages[j]=str((df_copy.iloc[index,25+j]))
#list1[j]=str((df_copy.iloc[index,1+j]))
#list2[j]=str((df_copy.iloc[index,10+j]))
#list3[j]=str((df_copy.iloc[index,12+j]))
#list4[j]=str((df_copy.iloc[index,31+j]))
#list5[j]=str((df_copy.iloc[index,32+j]))
list1[j]=str((df_copy.iloc[index,1]))
list2[j]=str((df_copy.iloc[index,10]))
list3[j]=str((df_copy.iloc[index,12]))
list4[j]=str((df_copy.iloc[index,31]))
list5[j]=str((df_copy.iloc[index,32]))
else:
for j in range(0,max):
df_copy.iloc[index,25+j]=listImages[j]
#df_copy.iloc[index,1+j]=list1[j]
#df_copy.iloc[index,10+j]=list2[j]
#df_copy.iloc[index,12+j]=list3[j]
#df_copy.iloc[index,31+j]=list4[j]
#df_copy.iloc[index,32+j]=list5[j]
df_copy.iloc[index,1]=list1[j]
df_copy.iloc[index,10]=list2[j]
df_copy.iloc[index,12]=list3[j]
df_copy.iloc[index,31]=list4[j]
df_copy.iloc[index,32]=list5[j]
#endregion
print("SKUf")
print(df_copy.iloc[:,2])
#print(df_copy.iloc[:,3])
###################################################################################
df_copy.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/OCCHIO-Cycle-Data-File_st.xlsx',index=False)
#df_copy.to_csv('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/OCCHIO-Cycle-Data-File.csv',index=False, encoding='utf-8')
df_copy.to_csv('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/OCCHIO-Cycle-Data-File_st.csv',index=False, encoding='utf_8_sig')
if uploaded_file and uploaded_file2:
ConvertCitrus(df,df2)
|