Spaces:
Sleeping
Sleeping
import streamlit as st #line:1 | |
import pandas as pd #line:2 | |
uploaded_file =st .file_uploader ("Choose product file",type ="csv")#line:4 | |
if uploaded_file :#line:6 | |
df =pd .read_csv (uploaded_file ,encoding ='utf8')#line:8 | |
uploaded_file2 =st .file_uploader ("Choose inventory file",type ="csv")#line:11 | |
if uploaded_file2 :#line:13 | |
df2 =pd .read_csv (uploaded_file2 ,encoding ='utf8')#line:15 | |
def ConvertCitrus (OO0O000O0O0OO0OO0 ,OOOO0OOO0O00O0OO0 ):#line:21 | |
import RemoveHTMLtags as RHT #line:24 | |
O000000O00OO0O0OO =str ('<style type=')+str ('"')+str ('"')+str ('text/css')+str ('"')+str ('"')+str ('><!--')#line:32 | |
O0O00O000O0O000O0 =['<p class=','"p1"','data-mce-fragment="1">,','<b data-mce-fragment="1">','<i data-mce-fragment="1">','<p>','</p>','<p*>','<ul>','</ul>','</i>','</b>','</p>','</br>','<li>','</li>','<br>','<strong>','</strong>','<span*>','</span>','"utf-8"','UTF-8','<a href*>','</a>','<meta charset=utf-8>',';;','<em>','</em>','"','<meta charset=','utf-8>','<p>','<p','data-mce-fragment=1',';','<style type=','<style type=','><!--','text/css','<style type=\"\"text/css\"\"><!--','--></style>','td {border: 1px solid #ccc','}br {mso-data-placement:same-cell','}','>']#line:41 | |
for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in OO0O000O0O0OO0OO0 .iterrows ():#line:55 | |
OO0O000O0O0OO0OO0 .iloc [O0OO00OOO0O00O00O ,2 ]=RHT .remove_tags (str (OO0O000O0O0OO0OO0 .iloc [O0OO00OOO0O00O00O ,2 ]))#line:56 | |
#print (OO0O000O0O0OO0OO0 .iloc [:,2 ])#line:58 | |
OO0O000O0O0OO0OO0 .iloc [:,2 ]=pd .Series (OO0O000O0O0OO0OO0 .iloc [:,2 ],dtype ="string")#line:63 | |
#print (OO0O000O0O0OO0OO0 .iloc [:,2 ].dtype )#line:64 | |
OO0000OO0OOOO0O00 =OO0O000O0O0OO0OO0 .columns .tolist ()#line:88 | |
OO0O0OO0OOO00OOOO =OO0000OO0OOOO0O00 .copy ()#line:89 | |
OO0O0OO0OOO00OOOO [1 ]=OO0000OO0OOOO0O00 [1 ]#line:90 | |
OO0O0OO0OOO00OOOO [17 ]=OO0000OO0OOOO0O00 [17 ]#line:92 | |
O00OO00000OOO000O =OO0O000O0O0OO0OO0 [OO0O0OO0OOO00OOOO ].copy (deep =True )#line:113 | |
#print ("SKU")#line:114 | |
#print (OO0O000O0O0OO0OO0 .iloc [:,24 ])#line:115 | |
O0OO00OO0O0O0OOO0 =OO0O000O0O0OO0OO0 .copy (deep =True )#line:117 | |
O00OO00000OOO000O .iloc [:,0 ]=O0OO00OO0O0O0OOO0 .iloc [:,13 ].copy (deep =True )#line:119 | |
print(OOO0OOO00OO0O00OO [20 ],OOO0OOO00OO0O00OO [21 ]) | |
for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in O0OO00OO0O0O0OOO0 .iterrows ():#line:122 | |
st.write(OOO0OOO00OO0O00OO [20 ],OOO0OOO00OO0O00OO [21 ]) | |
if not pd .isnull (OOO0OOO00OO0O00OO [21 ]):#line:123 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,5 ]=OOO0OOO00OO0O00OO [21 ]#line:125 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,4 ]=((( float(OOO0OOO00OO0O00OO [21 ]) /1.2 )/1.6 )*0.96 )#line:126 | |
print(OOO0OOO00OO0O00OO [21 ]) | |
else :#line:128 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,5 ]=OOO0OOO00OO0O00OO [20 ]#line:130 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,4 ]=((( float(OOO0OOO00OO0O00OO [20 ])/1.2 )/1.6 )*0.96 )#line:131 | |
print (OOO0OOO00OO0O00OO [20 ])#line:132 | |
#print ("COLUMN5")#line:133 | |
#print (O00OO00000OOO000O .iloc [:,5 ])#line:134 | |
O00OO00000OOO000O .iloc [:,7 ]=O0OO00OO0O0O0OOO0 .iloc [:,11 ].copy (deep =True )#line:136 | |
O00OO00000OOO000O .iloc [:,2 ]=O0OO00OO0O0O0OOO0 .iloc [:,24 ].copy (deep =True )#line:138 | |
O00OO00000OOO000O .iloc [:,8 ]=O0OO00OO0O0O0OOO0 .iloc [:,9 ].copy (deep =True )#line:140 | |
O00OO00000OOO000O .iloc [:,10 ]=O0OO00OO0O0O0OOO0 .iloc [:,3 ].copy (deep =True )#line:141 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [10 ]:'Brand'},inplace =True )#line:142 | |
O00OO00000OOO000O .columns .values [10 ]='Brand'#line:143 | |
O00OO00000OOO000O .iloc [:,30 ]=O0OO00OO0O0O0OOO0 .iloc [:,15 ].copy (deep =True )#line:145 | |
O00OO00000OOO000O .iloc [:,31 ]=O0OO00OO0O0O0OOO0 .iloc [:,5 ].copy (deep =True )#line:146 | |
O00OO00000OOO000O .iloc [:,32 ]=O0OO00OO0O0O0OOO0 .iloc [:,2 ].copy (deep =True )#line:147 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [8 ]:'Size 1'},inplace =True )#line:149 | |
#print (list (O00OO00000OOO000O .columns .values ))#line:151 | |
O00OO00000OOO000O .iloc [:,20 ]=O00OO00000OOO000O .iloc [:,20 ].astype (float )#line:160 | |
from babel .numbers import format_currency #line:162 | |
O00OO00000OOO000O .iloc [:,4 ]=O00OO00000OOO000O .iloc [:,4 ].apply (lambda OO00O0O000O0000O0 :format_currency (OO00O0O000O0000O0 ,currency ="GBP",locale ="en_GB"))#line:163 | |
O00OO00000OOO000O .iloc [:,5 ]=O00OO00000OOO000O .iloc [:,5 ].apply (lambda O0O0O0O0O00OOOOOO :format_currency (O0O0O0O0O00OOOOOO ,currency ="GBP",locale ="en_GB"))#line:164 | |
O00OO00000OOO000O .iloc [:,2 ]=O00OO00000OOO000O .iloc [:,2 ].astype (str ).str .replace ("'","")#line:168 | |
O00OO00000OOO000O .iloc [:,24 ]=O00OO00000OOO000O .iloc [:,24 ].astype (str ).str .replace ("'","")#line:172 | |
#print ("SKU")#line:174 | |
#print (O00OO00000OOO000O .iloc [:,2 ])#line:175 | |
#print (list (O00OO00000OOO000O .columns .values ))#line:194 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:199 | |
for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in O00OO00000OOO000O .iterrows ():#line:202 | |
if O0OO00OOO0O00O00O ==0 :#line:203 | |
print (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)'])#line:204 | |
if " mens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:205 | |
if " womens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:206 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Unisex"#line:207 | |
else :#line:208 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Mens"#line:209 | |
if " womens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:211 | |
if " mens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:212 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Unisex"#line:213 | |
else :#line:214 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Womens"#line:215 | |
if " ladys"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:216 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Ladys"#line:217 | |
if O0OO00OOO0O00O00O ==0 :#line:218 | |
print (OOO0OOO00OO0O00OO [12 ])#line:219 | |
#print (O00OO00000OOO000O .iloc [:,12 ])#line:220 | |
O00OO00000OOO000O .iloc [:,6 ]=""#line:224 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [0 ]:'Style Number'},inplace =True )#line:226 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [1 ]:'Product Name'},inplace =True )#line:227 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [2 ]:'Vendor SKU'},inplace =True )#line:228 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [3 ]:'UPC/EAN'},inplace =True )#line:229 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [4 ]:'Unit Cost'},inplace =True )#line:230 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [5 ]:'Unit MSRP'},inplace =True )#line:231 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:232 | |
#print (O00OO00000OOO000O .columns [6 ])#line:233 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [7 ]:'Colour'},inplace =True )#line:234 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [8 ]:'Size 1'},inplace =True )#line:236 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [9 ]:'Size 2'},inplace =True )#line:237 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [10 ]:'Brand'},inplace =True )#line:238 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [11 ]:'Year of Season'},inplace =True )#line:239 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [12 ]:'Gender'},inplace =True )#line:240 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [13 ]:'Manufacturer Part Code'},inplace =True )#line:241 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [14 ]:'Other Bar Code'},inplace =True )#line:242 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [15 ]:'VAT'},inplace =True )#line:243 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [16 ]:'Pack Qty'},inplace =True )#line:244 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [17 ]:'Stock Count'},inplace =True )#line:246 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [18 ]:'Price Band 1'},inplace =True )#line:247 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [19 ]:'Price Band 2'},inplace =True )#line:248 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [20 ]:'IE VAT'},inplace =True )#line:249 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [21 ]:'Unit Cost in Euros'},inplace =True )#line:250 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [22 ]:'MSRP in Euros'},inplace =True )#line:251 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [23 ]:'Commodity Codes'},inplace =True )#line:253 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [24 ]:'Country of Origin'},inplace =True )#line:254 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [30 ]:'Weight'},inplace =True )#line:256 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [31 ]:'Short Description'},inplace =True )#line:257 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [32 ]:'Long Description'},inplace =True )#line:258 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [33 ]:'Video Link'},inplace =True )#line:259 | |
O00OO00000OOO000O .iloc [:,9 ]=""#line:267 | |
O00OO00000OOO000O .iloc [:,13 ]=""#line:269 | |
O00OO00000OOO000O .iloc [:,14 ]=""#line:271 | |
O00OO00000OOO000O .iloc [:,16 ]=""#line:273 | |
O00OO00000OOO000O .iloc [:,18 ]=""#line:275 | |
O00OO00000OOO000O .iloc [:,19 ]=""#line:277 | |
O00OO00000OOO000O .iloc [:,20 ]=""#line:279 | |
O00OO00000OOO000O .iloc [:,21 ]=""#line:281 | |
O00OO00000OOO000O .iloc [:,22 ]=""#line:283 | |
O00OO00000OOO000O .iloc [:,33 ]=""#line:288 | |
O00OO00000OOO000O .iloc [:,15 ]="20"#line:293 | |
#print (list (O00OO00000OOO000O .columns .values ))#line:295 | |
O00OO00000OOO000O .iloc [:,3 ]=O00OO00000OOO000O .iloc [:,2 ]#line:298 | |
O00OO00000OOO000O .columns .values [10 ]='Brand'#line:299 | |
O00OO00000OOO000O .iloc [:,11 ]=""#line:300 | |
O00OO00000OOO000O .iloc [:,22 ]=""#line:301 | |
#print ("SKU")#line:305 | |
#print (O00OO00000OOO000O .iloc [:,2 ])#line:306 | |
O00OO00000OOO000O .iloc [:,23 ]=""#line:311 | |
O00OO00000OOO000O .iloc [:,24 ]=""#line:314 | |
O0O0O0O000OOO0OO0 =OO0O000O0O0OO0OO0 ['Variant SKU']#line:323 | |
OO000O0O0O0O00OOO =OO0O000O0O0OO0OO0 ['Variant SKU'].duplicated ().any ()#line:324 | |
OO000O0O0O0O00OOO =OOOO0OOO0O00O0OO0 ['SKU'].duplicated ().any ()#line:326 | |
O000OOO0000OO000O =OOOO0OOO0O00O0OO0 [OOOO0OOO0O00O0OO0 .duplicated (['SKU'],keep =False )]#line:328 | |
OOOOO0OOO0OO000OO =OO0O000O0O0OO0OO0 [OO0O000O0O0OO0OO0 .duplicated (['Variant SKU'],keep =False )]#line:331 | |
OOOO0OOO0O00O0OO0 =OOOO0OOO0O00O0OO0 .set_index ('SKU')#line:335 | |
OOOO0OOO0O00O0OO0 .reindex (O0O0O0O000OOO0OO0 )#line:340 | |
#print ("TERMINE")#line:357 | |
O00OO00000OOO000O .iloc [:,24 ]=OOOO0OOO0O00O0OO0 .loc [:,'COO']#line:359 | |
O00OO00000OOO000O .iloc [:,23 ]=OOOO0OOO0O00O0OO0 .loc [:,'HS Code']#line:360 | |
O00OO00000OOO000O ['Commodity Codes']=OOOO0OOO0O00O0OO0 ['HS Code'].values #line:362 | |
O00OO00000OOO000O ['Country of Origin']=OOOO0OOO0O00O0OO0 ['COO'].values #line:363 | |
#print ("SKU")#line:370 | |
#print (O00OO00000OOO000O .iloc [:,2 ])#line:371 | |
OO0O0000O00OO0O0O =[]#line:376 | |
for OO0OOO0OOOO0000O0 in range (49 ,58 ):#line:377 | |
OO0O0000O00OO0O0O .append (str (OO0OOO0OOOO0000O0 ))#line:379 | |
O00OO00000OOO000O [str (OO0OOO0OOOO0000O0 )]=''#line:380 | |
O0OOO00OO0O0O00O0 =[]#line:384 | |
for OO0OOO0OOOO0000O0 in range (0 ,24 ):#line:385 | |
O0OOO00OO0O0O00O0 .append (34 +OO0OOO0OOOO0000O0 )#line:386 | |
OO0OOO00O00OOOO00 =O00OO00000OOO000O .columns [O0OOO00OO0O0O00O0 ]#line:392 | |
O0OOO0O00OO0O00O0 =['Tech Specs','Size Chart','Geometry Chart','Frame','Rear Shock','Fork','Headset','Stem','Handlebar','Bar Tape / Grip','Brakes Levers','Brake Calipers','Tyres','Wheels','Front Derailleur','Rear Derailleur','Shift Levers','Chain','Cassette','Chainset','Bottom Bracket','Pedals','Saddle','Seatpost']#line:393 | |
OO0OOO00O00OOOO00 =O00OO00000OOO000O .columns [O0OOO00OO0O0O00O0 ]#line:394 | |
O00OO00000OOO000O .rename (columns =dict (zip (OO0OOO00O00OOOO00 ,O0OOO0O00OO0O00O0 )),inplace =True )#line:395 | |
O00OO00000OOO000O .iloc [:,34 :58 ]=''#line:398 | |
#print ("SKUf")#line:401 | |
#print (O00OO00000OOO000O .iloc [:,2 ])#line:402 | |
O00000O000O0OO0O0 =O00OO00000OOO000O .loc [pd .isna (O00OO00000OOO000O .loc [:,'Product Name']),:].index #line:422 | |
O00OO0OO0O0OO000O =O00OO00000OOO000O .loc [O00000O000O0OO0O0 ,'Image Src']#line:423 | |
OO000OOOO000000OO =[]#line:424 | |
for OOO0OOO00OO0O00OO in O00OO00000OOO000O .index :#line:425 | |
if pd .notna (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO ,'Product Name']):#line:427 | |
OOO00O00000O0O0O0 =OOO0OOO00OO0O00OO #line:429 | |
OO0OOO0OOOO0000O0 =1 #line:430 | |
OO0OO0O0OOOO0O0O0 =[]#line:432 | |
OO0OO0O0OOOO0O0O0 .append (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO ,'Image Src'])#line:434 | |
while pd .isna (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO +OO0OOO0OOOO0000O0 ,'Product Name'])and OOO0OOO00OO0O00OO +OO0OOO0OOOO0000O0 <len (O00OO00000OOO000O .index )-1 :#line:435 | |
if "http"in str (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO +OO0OOO0OOOO0000O0 ,'Image Src']):#line:437 | |
OO0OO0O0OOOO0O0O0 .append (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO +OO0OOO0OOOO0000O0 ,'Image Src'])#line:438 | |
OO0OOO0OOOO0000O0 =OO0OOO0OOOO0000O0 +1 #line:439 | |
OO000OOOO000000OO .append (OO0OO0O0OOOO0O0O0 )#line:440 | |
OOO0O0O0OOOO0OOOO =O00OO00000OOO000O .loc [pd .notna (O00OO00000OOO000O .loc [:,'Product Name']),:].index #line:443 | |
OO0O000OOO0O0O0O0 =0 #line:444 | |
for OO0OOO0OOOO0000O0 in range (len (OO000OOOO000000OO )):#line:445 | |
if OO0O000OOO0O0O0O0 <len (OO000OOOO000000OO [OO0OOO0OOOO0000O0 ]):#line:446 | |
OO0O000OOO0O0O0O0 =len (OO000OOOO000000OO [OO0OOO0OOOO0000O0 ])#line:447 | |
#print ("SKUf")#line:448 | |
#print (O00OO00000OOO000O .iloc [:,2 ])#line:449 | |
for O0O00000OOOO00000 in range (OO0O000OOO0O0O0O0 ):#line:453 | |
O00OO00000OOO000O .iloc [:,25 +O0O00000OOOO00000 ]=''#line:454 | |
O0000OO0000OOO0OO =0 #line:456 | |
for O0OO00OOO0O00O00O in OOO0O0O0OOOO0OOOO :#line:457 | |
for O0O00000OOOO00000 in range (len (OO000OOOO000000OO [O0000OO0000OOO0OO ])):#line:458 | |
if OO000OOOO000000OO [O0000OO0000OOO0OO ][O0O00000OOOO00000 ]!='nan':#line:461 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,25 +O0O00000OOOO00000 ]=OO000OOOO000000OO [O0000OO0000OOO0OO ][O0O00000OOOO00000 ]#line:462 | |
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [25 +O0O00000OOOO00000 ]:'Image'+str (O0O00000OOOO00000 +1 )},inplace =True )#line:463 | |
O0000OO0000OOO0OO =O0000OO0000OOO0OO +1 #line:465 | |
#print ("SKUf")#line:466 | |
#print (O00OO00000OOO000O .iloc [:,2 ])#line:467 | |
O0O0O00O0OOO00OO0 =[None ]*OO0O000OOO0O0O0O0 #line:469 | |
OOO0O000OO0OOO0OO =[None ]*OO0O000OOO0O0O0O0 #line:470 | |
OOOOO0OOOO00OOOO0 =[None ]*OO0O000OOO0O0O0O0 #line:471 | |
O00O0000OO0OOOO0O =[None ]*OO0O000OOO0O0O0O0 #line:472 | |
OOOOOOO00000O00OO =[None ]*OO0O000OOO0O0O0O0 #line:473 | |
O0O00OOO0O0OOO0O0 =[None ]*OO0O000OOO0O0O0O0 #line:474 | |
for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in O00OO00000OOO000O .iterrows ():#line:475 | |
if pd .notna (O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,1 ]):#line:478 | |
for O0O00000OOOO00000 in range (0 ,OO0O000OOO0O0O0O0 ):#line:479 | |
O0O0O00O0OOO00OO0 [O0O00000OOOO00000 ]=str ((O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,25 +O0O00000OOOO00000 ]))#line:480 | |
OOO0O000OO0OOO0OO [O0O00000OOOO00000 ]=str ((O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,1 ]))#line:486 | |
OOOOO0OOOO00OOOO0 [O0O00000OOOO00000 ]=str ((O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,10 ]))#line:487 | |
O00O0000OO0OOOO0O [O0O00000OOOO00000 ]=str ((O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]))#line:488 | |
OOOOOOO00000O00OO [O0O00000OOOO00000 ]=str ((O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,31 ]))#line:489 | |
O0O00OOO0O0OOO0O0 [O0O00000OOOO00000 ]=str ((O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,32 ]))#line:490 | |
else :#line:492 | |
for O0O00000OOOO00000 in range (0 ,OO0O000OOO0O0O0O0 ):#line:493 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,25 +O0O00000OOOO00000 ]=O0O0O00O0OOO00OO0 [O0O00000OOOO00000 ]#line:494 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,1 ]=OOO0O000OO0OOO0OO [O0O00000OOOO00000 ]#line:500 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,10 ]=OOOOO0OOOO00OOOO0 [O0O00000OOOO00000 ]#line:501 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]=O00O0000OO0OOOO0O [O0O00000OOOO00000 ]#line:502 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,31 ]=OOOOOOO00000O00OO [O0O00000OOOO00000 ]#line:503 | |
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,32 ]=O0O00OOO0O0OOO0O0 [O0O00000OOOO00000 ]#line:504 | |
#print ("SKUf")#line:508 | |
#print (O00OO00000OOO000O .iloc [:,2 ])#line:509 | |
return O00OO00000OOO000O #line:518 | |
def convert_df (OOO00OO0OO0OOOOO0 ):#line:521 | |
return OOO00OO0OO0OOOOO0 .to_csv (index =False ).encode ('utf_8_sig')#line:522 | |
if uploaded_file and uploaded_file2 :#line:524 | |
df3 =ConvertCitrus (df ,df2 )#line:525 | |
csv =convert_df (df3 )#line:529 | |
st .download_button ("Press to Download",csv ,"file.csv","text/csv",key ='download-csv')#line:537 | |