JPLTedCas commited on
Commit
98ae492
·
1 Parent(s): bb72807

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +218 -537
app.py CHANGED
@@ -1,537 +1,218 @@
1
- import streamlit as st
2
- import pandas as pd
3
-
4
- uploaded_file = st.file_uploader("Choose product file", type="csv")
5
-
6
- if uploaded_file:
7
- #df = pd.read_excel(uploaded_file)
8
- df = pd.read_csv(uploaded_file, encoding='utf8')
9
- #st.dataframe(df)
10
-
11
- uploaded_file2 = st.file_uploader("Choose inventory file", type="csv")
12
-
13
- if uploaded_file2:
14
- #df2 = pd.read_excel(uploaded_file2)
15
- df2 = pd.read_csv(uploaded_file2, encoding='utf8')
16
-
17
- #st.dataframe(df2)
18
-
19
- #st.table(df2)
20
-
21
- def ConvertCitrus(df,df2):
22
- # Load pandas
23
- #import re as re
24
- import RemoveHTMLtags as RHT
25
- #INPUT FILE
26
-
27
-
28
-
29
- #df.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/products_export_1.xlsx',index=False)
30
- #df2.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/inventory_export_1.xlsx',index=False)
31
-
32
- tagsp=str('<style type=')+str('"')+str('"')+str('text/css')+str('"')+str('"')+str('><!--')
33
- tags_list = ['<p class=','"p1"', 'data-mce-fragment="1">,','<b data-mce-fragment="1">','<i data-mce-fragment="1">','<p>' ,'</p>' , '<p*>',
34
- '<ul>','</ul>',
35
- '</i>','</b>','</p>','</br>',
36
- '<li>','</li>',
37
- '<br>',
38
- '<strong>','</strong>',
39
- '<span*>','</span>', '"utf-8"','UTF-8',
40
- '<a href*>','</a>','<meta charset=utf-8>',';;',
41
- '<em>','</em>','"','<meta charset=','utf-8>','<p>','<p','data-mce-fragment=1',';','<style type=','<style type=','><!--','text/css','<style type=\"\"text/css\"\"><!--','--></style>','td {border: 1px solid #ccc','}br {mso-data-placement:same-cell','}','>']
42
-
43
-
44
-
45
-
46
- #def remove_html_tags(text):
47
- # """Remove html tags from a string"""
48
- # import re
49
- # clean = re.compile('<.*?>')
50
- # return re.sub(clean, '', text)
51
- #for tag in tags_list:
52
- ## df['overview_copy'] = df['overview_copy'].str.replace(tag, '')
53
- # df.replace(to_replace=tag, value='', regex=True, inplace=True)
54
-
55
- for index, row in df.iterrows():
56
- df.iloc[index,2]=RHT.remove_tags(str(df.iloc[index,2]))
57
-
58
- print(df.iloc[:,2])
59
-
60
- #df.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/products_export_1-nohtml.xlsx')
61
-
62
- #df.fillna('', inplace=True)
63
- df.iloc[:,2] = pd.Series(df.iloc[:,2],dtype="string")
64
- print(df.iloc[:,2].dtype)
65
- #s = pd.Series(['a', 'b', 'c'], dtype="string")
66
- #s.dtype
67
-
68
- #CONVERT FORMATS
69
-
70
- #Column A(0) Ignore
71
- #Column B(1) “Title” > Column B(1) “Product Name”
72
- #Column C(2) Ignore
73
- #Column D(3) “Vendor” > Column K(10) “Brand”
74
- #Column F(5) “Custom Product Type” > Column AF(31) “Short Description”
75
- #Column J(9) “Option1 Value” > Column I(8) “Size 1”
76
- #Column L(11) “Option2 Value” > Column H(7) > Colour
77
- #Column M(12) - Ignore
78
- #Column N(13) “Option 3 Value” > Column A(0) “Style Number”
79
- #1. Problems in Column N. Some codes do not stay as a number when the Citrus Lime csv is re-opened (8.05652E+12 instead of 8056516179091) The saved csv keeps turning this column back to “general’ format column when I re-open it, even after I save it as number column. The upload must keep this as a number formatted column.
80
-
81
- #Column O(14) - Ignore
82
- #Column P(15) “Variant Grams” > Column AE (30) “Weight (grams)
83
- #Column R(17) “Variant Inventory Qty” > Column R (17) “Stock Count”. THIS IS THE KEY TO THE DAILY UPLOAD
84
- #Column U(20) “Variant Price” > Column F (5) “Unit MSRP”
85
-
86
- #Column Y > C&D
87
- #################################################################################################
88
- temp_cols=df.columns.tolist()
89
- new_cols=temp_cols.copy()
90
- new_cols[1]=temp_cols[1]
91
-
92
- new_cols[17]=temp_cols[17]
93
-
94
- #################################################################################################
95
- #THERE IS NO EXISTING COLUMN ON THE SHOPIFY EXPORT TO DIRECTLY PROVIDE DATA FOR COLUMN E ON THE CITRUS LIME CSV (which is the wholesale price ex VAT to the retailer). However – Column U “ Variant Price” can provide the information for Column E with the following formula:
96
-
97
- #((Column U/1.2)/1.6)*0.96
98
-
99
- #Column Y “Variant Barcode” > Column C “Vendor SKU” (2) (and D "UPC/EAN" (3)??)
100
-
101
- #There are 2 problems with converting Column Y to Column C.
102
- #2. Shopify exports the UPC data and adds an apostrophe. This fails the SIM process. We need to get data without the apostrophe.
103
- #3. Vendor SKU. The CSV file keeps switching the data to a non-number eg 8056516178308 shows as 8.05652E+12. The saved csv keeps turning this column to “general’ format column when I re-open it, even after I save it as number column. The upload must keep this as a number formatted column.
104
-
105
- #This is where it gets complicated…
106
-
107
- #Shopify exports the image file as https:// links in an odd way. Instead of attributing image 1, image 2, and image 3 etc in dedicated and separate columns, it spreads them across the sizes for the related product in the same column (Column Z “Image Src”). Column AA in the Shopify export csv just shows the image position instead. We need to find a solution. We need to be able to provide https// image links in separate columns for each product and size. For example, if a product has 3 images, these need to be converted into Citrus Lime CSV columns Column Z “Image 1”, Column AA “Image 2”, Column AB “Image 3”, Column AC “Image 4” etc.
108
- #new_cols[4]=((temp_cols[20]/1.2)/1.96)*0.96
109
-
110
- #Column C “Body (HTML)” > Column AG “Long Description” (32)
111
-
112
-
113
- df_copy=df[new_cols].copy(deep=True)
114
- print("SKU")
115
- print(df.iloc[:,24])
116
-
117
- local_df = df.copy(deep=True)
118
-
119
- df_copy.iloc[:,0]=local_df.iloc[:,13].copy(deep=True)
120
- #We change column 5 for getting Compared Price instead on regular price (21 instead of 20). Only if in 21 there is data. If not, keep data from 20
121
- #df_copy.iloc[:,5]=local_df.iloc[:,20].copy(deep=True)
122
- for index, row in local_df.iterrows():
123
- if not pd.isnull(row[21]):
124
- #df_copy.at[index, 5] = row[21]
125
- df_copy.iloc[index, 5] = row[21]
126
- df_copy.iloc[index,4]=(((row[21]/1.2)/1.6)*0.96)
127
- #print(row[21])
128
- else:
129
- #df_copy.at[index, 5] = row[20]
130
- df_copy.iloc[index, 5] = row[20]
131
- df_copy.iloc[index,4]=(((row[20]/1.2)/1.6)*0.96)
132
- print(row[21])
133
- print("COLUMN5")
134
- print(df_copy.iloc[:,5])
135
- #df_copy.iloc[:,5]=local_df.iloc[:,21].copy(deep=True)
136
- df_copy.iloc[:,7]=local_df.iloc[:,11].copy(deep=True)
137
- #24 is variant Bar code
138
- df_copy.iloc[:,2]=local_df.iloc[:,24].copy(deep=True)
139
-
140
- df_copy.iloc[:,8]=local_df.iloc[:,9].copy(deep=True)
141
- df_copy.iloc[:,10]=local_df.iloc[:,3].copy(deep=True)
142
- df_copy.rename(columns={df_copy.columns[10]: 'Brand'},inplace=True)
143
- df_copy.columns.values[10] = 'Brand'
144
-
145
- df_copy.iloc[:,30]=local_df.iloc[:,15].copy(deep=True)
146
- df_copy.iloc[:,31]=local_df.iloc[:,5].copy(deep=True)
147
- df_copy.iloc[:,32]=local_df.iloc[:,2].copy(deep=True)
148
-
149
- df_copy.rename(columns={df_copy.columns[8]: 'Size 1'},inplace=True)
150
-
151
- print(list(df_copy.columns.values))
152
-
153
-
154
-
155
- #Before it was df_copy.iloc[:,4]=(((df_copy.iloc[:,20]/1.2)/1.96)*0.96)
156
- #Equally to Column 5, i ncolumn 4 we have to check if there is value in 20 or not
157
-
158
- #df_copy.iloc[:,4]=(((df_copy.iloc[:,20]/1.2)/1.6)*0.96)
159
- #WE CONVERT COLUMN 20 to numeric (in case it's read as string)
160
- df_copy.iloc[:,20] = df_copy.iloc[:,20].astype(float)
161
-
162
- from babel.numbers import format_currency
163
- df_copy.iloc[:,4] = df_copy.iloc[:,4].apply(lambda x: format_currency(x, currency="GBP", locale="en_GB"))
164
- df_copy.iloc[:,5] = df_copy.iloc[:,5].apply(lambda x: format_currency(x, currency="GBP", locale="en_GB"))
165
-
166
- #print(((df_copy.iloc[:,20]/1.2)/1.96)*0.96)
167
- #df_copy.iloc[:,2]=df_copy.iloc[:,2].str.replace("'","")
168
- df_copy.iloc[:,2] = df_copy.iloc[:,2].astype(str).str.replace("'","")
169
-
170
-
171
- #df_copy.iloc[:,24]=df_copy.iloc[:,24].str.replace("'","")
172
- df_copy.iloc[:,24] = df_copy.iloc[:,24].astype(str).str.replace("'","")
173
-
174
- print("SKU")
175
- print(df_copy.iloc[:,2])
176
-
177
-
178
-
179
-
180
-
181
-
182
- #rename specific column names
183
-
184
- #df_copy.rename(columns = {'Variant Inventory Qty':'Stock Count','Variant Grams' : 'Weight (grams)'}, inplace = True)
185
-
186
- #df_copy.rename(columns = {'Option2 Value':'Colour','Option1 Value' : 'Size 1'}, inplace = True)
187
-
188
- #df_copy.rename(columns = {'Vendor':'Brand','Title' : 'Product Name'}, inplace = True)
189
- #df_copy.rename(columns = {'Body (HTML)':'Long Description'}, inplace = True)
190
-
191
- #df_copy.rename(columns={df_copy.columns[4]: 'Unit Cost'},inplace=True)
192
-
193
-
194
- print(list(df_copy.columns.values))
195
-
196
-
197
- #df_copy.rename(columns={df_copy.columns[31]: 'Short Description'},inplace=True)
198
- #df_copy.rename(columns={df_copy.columns[2]: 'Vendor SKU'},inplace=True)
199
- df_copy.rename(columns={df_copy.columns[6]: 'Colour Code (Simple Colour)'},inplace=True)
200
- ##IN COLUMN H (6), WE HAVE SOME TAGS AND WE WANT TO GET THE TAG "MEN, WOMEN, LADY OR BOTH (UNISEX)"
201
- #WE ARE GETTING THAT INFO BEFORE REMOVING DATA FROM 6
202
- for index, row in df_copy.iterrows():
203
- if index==0:
204
- print(row['Colour Code (Simple Colour)'])
205
- if " mens" in str(row['Colour Code (Simple Colour)']):
206
- if " womens" in str(row['Colour Code (Simple Colour)']):
207
- df_copy.iloc[index,12]="Unisex"
208
- else:
209
- df_copy.iloc[index,12]="Mens"
210
-
211
- if " womens" in str(row['Colour Code (Simple Colour)']):
212
- if " mens" in str(row['Colour Code (Simple Colour)']):
213
- df_copy.iloc[index,12]="Unisex"
214
- else:
215
- df_copy.iloc[index,12]="Womens"
216
- if " ladys" in str(row['Colour Code (Simple Colour)']):
217
- df_copy.iloc[index,12]="Ladys"
218
- if index==0:
219
- print(row[12])
220
- print(df_copy.iloc[:,12])
221
-
222
-
223
-
224
- df_copy.iloc[:,6] = ""
225
- #Style Number Product Name Vendor SKU UPC/EAN Unit Cost Unit MSRP Colour Code (Simple Colour) Colour
226
- df_copy.rename(columns={df_copy.columns[0]: 'Style Number'},inplace=True)
227
- df_copy.rename(columns={df_copy.columns[1]: 'Product Name'},inplace=True)
228
- df_copy.rename(columns={df_copy.columns[2]: 'Vendor SKU'},inplace=True)
229
- df_copy.rename(columns={df_copy.columns[3]: 'UPC/EAN'},inplace=True)
230
- df_copy.rename(columns={df_copy.columns[4]: 'Unit Cost'},inplace=True)
231
- df_copy.rename(columns={df_copy.columns[5]: 'Unit MSRP'},inplace=True)
232
- df_copy.rename(columns={df_copy.columns[6]: 'Colour Code (Simple Colour)'},inplace=True)
233
- print(df_copy.columns[6])
234
- df_copy.rename(columns={df_copy.columns[7]: 'Colour'},inplace=True)
235
- #Size 1 Size 2 Brand Year or Season Gender Manufacturer Part Code Other Barcode VAT Pack Qty
236
- df_copy.rename(columns={df_copy.columns[8]: 'Size 1'},inplace=True)
237
- df_copy.rename(columns={df_copy.columns[9]: 'Size 2'},inplace=True)
238
- df_copy.rename(columns={df_copy.columns[10]: 'Brand'},inplace=True)
239
- df_copy.rename(columns={df_copy.columns[11]: 'Year of Season'},inplace=True)
240
- df_copy.rename(columns={df_copy.columns[12]: 'Gender'},inplace=True)
241
- df_copy.rename(columns={df_copy.columns[13]: 'Manufacturer Part Code'},inplace=True)
242
- df_copy.rename(columns={df_copy.columns[14]: 'Other Bar Code'},inplace=True)
243
- df_copy.rename(columns={df_copy.columns[15]: 'VAT'},inplace=True)
244
- df_copy.rename(columns={df_copy.columns[16]: 'Pack Qty'},inplace=True)
245
- #Stock Count Price Band 1 Price Band 2 IE VAT Unit Cost in Euros MSRP in Euros
246
- df_copy.rename(columns={df_copy.columns[17]: 'Stock Count'},inplace=True)
247
- df_copy.rename(columns={df_copy.columns[18]: 'Price Band 1'},inplace=True)
248
- df_copy.rename(columns={df_copy.columns[19]: 'Price Band 2'},inplace=True)
249
- df_copy.rename(columns={df_copy.columns[20]: 'IE VAT'},inplace=True)
250
- df_copy.rename(columns={df_copy.columns[21]: 'Unit Cost in Euros'},inplace=True)
251
- df_copy.rename(columns={df_copy.columns[22]: 'MSRP in Euros'},inplace=True)
252
- #Commodity Codes Country of Origin Image (multiple images can be added in separate columns if available)
253
- df_copy.rename(columns={df_copy.columns[23]: 'Commodity Codes'},inplace=True)
254
- df_copy.rename(columns={df_copy.columns[24]: 'Country of Origin'},inplace=True)
255
- #Weight Short Description Long Description Video Link
256
- df_copy.rename(columns={df_copy.columns[30]: 'Weight'},inplace=True)
257
- df_copy.rename(columns={df_copy.columns[31]: 'Short Description'},inplace=True)
258
- df_copy.rename(columns={df_copy.columns[32]: 'Long Description'},inplace=True)
259
- df_copy.rename(columns={df_copy.columns[33]: 'Video Link'},inplace=True)
260
-
261
-
262
-
263
-
264
-
265
-
266
-
267
- df_copy.iloc[:,9] = ""
268
-
269
- df_copy.iloc[:,13] = ""
270
-
271
- df_copy.iloc[:,14] = ""
272
-
273
- df_copy.iloc[:,16] = ""
274
-
275
- df_copy.iloc[:,18] = ""
276
-
277
- df_copy.iloc[:,19] = ""
278
-
279
- df_copy.iloc[:,20] = ""
280
-
281
- df_copy.iloc[:,21] = ""
282
-
283
- df_copy.iloc[:,22] = ""
284
- #df_copy.rename(columns={df_copy.columns[26]: 'Weight (Grams)'},inplace=True)
285
-
286
- #df_copy.iloc[:,26] = ""
287
-
288
- df_copy.iloc[:,33] = ""
289
-
290
-
291
-
292
- #df_copy.iloc[:,5] = " "
293
- df_copy.iloc[:,15] = "20"
294
-
295
- print(list(df_copy.columns.values))
296
-
297
- #Column Y in the export and this code should go into both Columns C and D in the conversion with the titles “Vendor SKU” and “UPC/EAN” It is replicated for a complicated reason that I won’t explain here, but Column Y in the export should go into both Column C and D in the conversion
298
- df_copy.iloc[:,3] = df_copy.iloc[:,2]
299
- df_copy.columns.values[10] = 'Brand'
300
- df_copy.iloc[:,11] = ""
301
- df_copy.iloc[:,22] = ""
302
- #df_copy.rename(columns={df_copy.columns[30]: 'Weight (Grams)'},inplace=True)
303
-
304
-
305
- print("SKU")
306
- print(df_copy.iloc[:,2])
307
-
308
-
309
- #DATA COMING FROM THE OTHER CSV FILE
310
-
311
- df_copy.iloc[:,23] = ""
312
-
313
-
314
- df_copy.iloc[:,24] = ""
315
-
316
- #WARNING: HEADER IS IN SECOND ROW. WE DONT HAVE INTO ACCOUNT FIRST ROW
317
- #df2 = pd.read_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/inventory_export_12.xlsx',engine="openpyxl", header=1)
318
-
319
-
320
- #WE HAVE TO REORDER COLUMNS COO and HS Code in df2 in order to match the index order of df
321
- #list1=df_copy.set_index('Vendor SKU').T.to_dict('list')
322
- #print(list1)
323
- new_index=df['Variant SKU']
324
- boolean = df['Variant SKU'].duplicated().any()
325
- #print(boolean)
326
- boolean = df2['SKU'].duplicated().any()
327
- #print(boolean)
328
- duplicateRows2 = df2[df2.duplicated(['SKU'],keep = False)]
329
- #print(duplicateRows2['SKU'])
330
-
331
- duplicateRows = df[df.duplicated(['Variant SKU'],keep = False)]
332
- #print(duplicateRows)
333
- #print(duplicateRows['Variant SKU'])
334
- #print(new_index)
335
- df2=df2.set_index('SKU')
336
- #print(df2)
337
- #i=df2.index
338
- #for x in i:
339
- # print(x)
340
- df2.reindex(new_index)
341
- #i=df2.index
342
- #for x in i:
343
- # print(x)
344
- #print(df2)
345
- #print(df2.index)
346
- #df3 = pd.DataFrame(students, index=['a', 'b', 'c', 'd', 'e'])
347
- #print("Original DataFrame: ")
348
- #print(df)
349
-
350
-
351
-
352
-
353
-
354
-
355
-
356
-
357
- print("TERMINE")
358
-
359
- df_copy.iloc[:,24] = df2.loc[:,'COO']
360
- df_copy.iloc[:,23] = df2.loc[:,'HS Code']
361
-
362
- df_copy['Commodity Codes']=df2['HS Code'].values
363
- df_copy['Country of Origin']=df2['COO'].values
364
-
365
-
366
- #print(df2.loc[:,'COO'])
367
- #print(df2.loc[:,'HS Code'])
368
- #print(df_copy.iloc[:,24])
369
- #print(df_copy.iloc[:,23])
370
- print("SKU")
371
- print(df_copy.iloc[:,2])
372
-
373
-
374
-
375
- #WE COMPLETE THE DATAFRMAE WITH DUMMY COLUMNS TILL THE MAXIMUM DESIRED NUMBER
376
- header_list=[]
377
- for i in range(49,58):
378
- #df.insert(i, "Dummy", [], True)
379
- header_list.append(str(i))
380
- df_copy[str(i)]=''
381
-
382
-
383
-
384
- column_indices=[]
385
- for i in range(0,24):
386
- column_indices.append(34+i)
387
-
388
- #Tech Specs Size Chart Geometry Chart Frame Rear Shock Fork
389
- #Headset Stem Handlebar Bar Tape / Grip Brakes Levers Brake Calipers Tyres Wheels Front Derailleur
390
- #Rear Derailleur Shift Levers Chain Cassette Chainset Bottom Bracket Pedals Saddle Seatpost
391
-
392
- old_names = df_copy.columns[column_indices]
393
- new_names = ['Tech Specs','Size Chart','Geometry Chart','Frame', 'Rear Shock', 'Fork', 'Headset', 'Stem', 'Handlebar', 'Bar Tape / Grip', 'Brakes Levers', 'Brake Calipers', 'Tyres', 'Wheels', 'Front Derailleur', 'Rear Derailleur', 'Shift Levers' ,'Chain' ,'Cassette' ,'Chainset' ,'Bottom Bracket', 'Pedals', 'Saddle', 'Seatpost']
394
- old_names = df_copy.columns[column_indices]
395
- df_copy.rename(columns=dict(zip(old_names, new_names)), inplace=True)
396
-
397
-
398
- df_copy.iloc[:,34:58]=''
399
-
400
-
401
- print("SKUf")
402
- print(df_copy.iloc[:,2])
403
- #print(df_copy.iloc[:,3])
404
-
405
- ## Rename all columns with list
406
- #cols = ['Courses','Courses_Fee','Courses_Duration']
407
- #df_copy.columns = cols
408
- #print(df.columns)
409
-
410
-
411
- ###################
412
- #PUT IMAGES IN A SIGNLE ROW: WE LOOK FOR IMAGES COMING FROM COMMON NAMES
413
- #Shopify exports the image file as https:// links in an odd way. Instead of attributing image 1, image 2, and image 3 etc in dedicated
414
- #and separate columns, it spreads them across the sizes for the related product in the same column (Column Z “Image Src”).
415
- #Column AA in the Shopify export csv just shows the image position instead. We need to find a solution.
416
- #We need to be able to provide https// image links in separate columns for each product and size. For example, if a product has 3 images,
417
- #these need to be converted into Citrus Lime CSV columns Column Z “Image 1”, Column AA “Image 2”, Column AB “Image 3”, Column AC “Image 4”
418
- #etc
419
- ####################
420
- #region imagesRow2Column
421
- #We get the list of rows with NAN data in Product Name column (same product name but different sizes (XS, XL...). Each of these rows has a image scr link
422
- list_col=df_copy.loc[pd.isna(df_copy.loc[:,'Product Name']), :].index
423
- images=df_copy.loc[list_col,'Image Src']
424
- list_end=[]
425
- for row in df_copy.index:
426
- #NotNA gets rows where Product Name column has a name in it (first image and row where we should add the images)
427
- if pd.notna(df_copy.loc[row,'Product Name']):
428
- #print(df_copy.loc[row,'Product Name'])
429
- rowNotNa=row
430
- i=1
431
- #j=1
432
- list_img=[]
433
- #WE INCLUDE IN THE LIST THE FIRST IMAGE
434
- list_img.append(df_copy.loc[row,'Image Src'])
435
- while pd.isna(df_copy.loc[row+i,'Product Name']) and row+i<len(df_copy.index)-1:
436
- #WE ADD THE REST OF THE IMAGES (FOLLOWING ROWS)
437
- if "http" in str(df_copy.loc[row+i,'Image Src']):
438
- list_img.append(df_copy.loc[row+i,'Image Src'])
439
- i=i+1
440
- list_end.append(list_img)
441
-
442
- #IN list_end WE HAVE ALL OF THE IMAGES FOR EACH PRODUCT NAME
443
- index_nonnan=df_copy.loc[pd.notna(df_copy.loc[:,'Product Name']), :].index
444
- max=0
445
- for i in range(len(list_end)):
446
- if max<len(list_end[i]):
447
- max=len(list_end[i])
448
- print("SKUf")
449
- print(df_copy.iloc[:,2])
450
-
451
- #WE CHANGE THE COLUMN NAME OF THE COLUMNS WHERE THERE ARE IMAGES: EACH COLUMN IS CALLED "Image x"
452
- #We first delete old values in the Image columns
453
- for j in range(max):
454
- df_copy.iloc[:,25+j]=''
455
-
456
- counter=0
457
- for index in index_nonnan:
458
- for j in range(len(list_end[counter])):
459
-
460
-
461
- if list_end[counter][j]!='nan':
462
- df_copy.iloc[index,25+j]=list_end[counter][j]
463
- df_copy.rename(columns={df_copy.columns[25+j]: 'Image'+str(j+1)},inplace=True)
464
-
465
- counter=counter+1
466
- print("SKUf")
467
- print(df_copy.iloc[:,2])
468
- #WE HAVE TO FILL NAN ROWS (SAME PRODUCT BUT DIFFERENT SIZES) WITH THE SAME IMAGES THAT IN NON NAN ROWS (MAIN PRODUCT-SIZE)
469
- listImages=[None] * max
470
- list1=[None] * max
471
- list2=[None] * max
472
- list3=[None] * max
473
- list4=[None] * max
474
- list5=[None] * max
475
- for index, row in df_copy.iterrows():
476
- #NotNA gets rows where Product Name column has a name in it (first image and row where we should add the images)
477
- #print(df_copy.iloc[index,1])
478
- if pd.notna(df_copy.iloc[index,1]):
479
- for j in range(0,max):
480
- listImages[j]=str((df_copy.iloc[index,25+j]))
481
- #list1[j]=str((df_copy.iloc[index,1+j]))
482
- #list2[j]=str((df_copy.iloc[index,10+j]))
483
- #list3[j]=str((df_copy.iloc[index,12+j]))
484
- #list4[j]=str((df_copy.iloc[index,31+j]))
485
- #list5[j]=str((df_copy.iloc[index,32+j]))
486
- list1[j]=str((df_copy.iloc[index,1]))
487
- list2[j]=str((df_copy.iloc[index,10]))
488
- list3[j]=str((df_copy.iloc[index,12]))
489
- list4[j]=str((df_copy.iloc[index,31]))
490
- list5[j]=str((df_copy.iloc[index,32]))
491
-
492
- else:
493
- for j in range(0,max):
494
- df_copy.iloc[index,25+j]=listImages[j]
495
- #df_copy.iloc[index,1+j]=list1[j]
496
- #df_copy.iloc[index,10+j]=list2[j]
497
- #df_copy.iloc[index,12+j]=list3[j]
498
- #df_copy.iloc[index,31+j]=list4[j]
499
- #df_copy.iloc[index,32+j]=list5[j]
500
- df_copy.iloc[index,1]=list1[j]
501
- df_copy.iloc[index,10]=list2[j]
502
- df_copy.iloc[index,12]=list3[j]
503
- df_copy.iloc[index,31]=list4[j]
504
- df_copy.iloc[index,32]=list5[j]
505
-
506
- #endregion
507
-
508
- print("SKUf")
509
- print(df_copy.iloc[:,2])
510
- #print(df_copy.iloc[:,3])
511
-
512
- ###################################################################################
513
- #df_copy.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/OCCHIO-Cycle-Data-File_st.xlsx',index=False)
514
-
515
-
516
-
517
- #df_copy.to_csv('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/OCCHIO-Cycle-Data-File_st.csv',index=False, encoding='utf_8_sig')
518
- return df_copy
519
-
520
-
521
- def convert_df(df):
522
- return df.to_csv(index=False).encode('utf_8_sig')
523
-
524
- if uploaded_file and uploaded_file2:
525
- df3=ConvertCitrus(df,df2)
526
-
527
-
528
-
529
- csv = convert_df(df3)
530
-
531
- st.download_button(
532
- "Press to Download",
533
- csv,
534
- "file.csv",
535
- "text/csv",
536
- key='download-csv'
537
- )
 
1
+ import streamlit as st #line:1
2
+ import pandas as pd #line:2
3
+ uploaded_file =st .file_uploader ("Choose product file",type ="csv")#line:4
4
+ if uploaded_file :#line:6
5
+ df =pd .read_csv (uploaded_file ,encoding ='utf8')#line:8
6
+ uploaded_file2 =st .file_uploader ("Choose inventory file",type ="csv")#line:11
7
+ if uploaded_file2 :#line:13
8
+ df2 =pd .read_csv (uploaded_file2 ,encoding ='utf8')#line:15
9
+ def ConvertCitrus (OO0O000O0O0OO0OO0 ,OOOO0OOO0O00O0OO0 ):#line:21
10
+ import RemoveHTMLtags as RHT #line:24
11
+ O000000O00OO0O0OO =str ('<style type=')+str ('"')+str ('"')+str ('text/css')+str ('"')+str ('"')+str ('><!--')#line:32
12
+ O0O00O000O0O000O0 =['<p class=','"p1"','data-mce-fragment="1">,','<b data-mce-fragment="1">','<i data-mce-fragment="1">','<p>','</p>','<p*>','<ul>','</ul>','</i>','</b>','</p>','</br>','<li>','</li>','<br>','<strong>','</strong>','<span*>','</span>','"utf-8"','UTF-8','<a href*>','</a>','<meta charset=utf-8>',';;','<em>','</em>','"','<meta charset=','utf-8>','<p>','<p','data-mce-fragment=1',';','<style type=','<style type=','><!--','text/css','<style type=\"\"text/css\"\"><!--','--></style>','td {border: 1px solid #ccc','}br {mso-data-placement:same-cell','}','>']#line:41
13
+ for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in OO0O000O0O0OO0OO0 .iterrows ():#line:55
14
+ OO0O000O0O0OO0OO0 .iloc [O0OO00OOO0O00O00O ,2 ]=RHT .remove_tags (str (OO0O000O0O0OO0OO0 .iloc [O0OO00OOO0O00O00O ,2 ]))#line:56
15
+ print (OO0O000O0O0OO0OO0 .iloc [:,2 ])#line:58
16
+ OO0O000O0O0OO0OO0 .iloc [:,2 ]=pd .Series (OO0O000O0O0OO0OO0 .iloc [:,2 ],dtype ="string")#line:63
17
+ print (OO0O000O0O0OO0OO0 .iloc [:,2 ].dtype )#line:64
18
+ OO0000OO0OOOO0O00 =OO0O000O0O0OO0OO0 .columns .tolist ()#line:88
19
+ OO0O0OO0OOO00OOOO =OO0000OO0OOOO0O00 .copy ()#line:89
20
+ OO0O0OO0OOO00OOOO [1 ]=OO0000OO0OOOO0O00 [1 ]#line:90
21
+ OO0O0OO0OOO00OOOO [17 ]=OO0000OO0OOOO0O00 [17 ]#line:92
22
+ O00OO00000OOO000O =OO0O000O0O0OO0OO0 [OO0O0OO0OOO00OOOO ].copy (deep =True )#line:113
23
+ print ("SKU")#line:114
24
+ print (OO0O000O0O0OO0OO0 .iloc [:,24 ])#line:115
25
+ O0OO00OO0O0O0OOO0 =OO0O000O0O0OO0OO0 .copy (deep =True )#line:117
26
+ O00OO00000OOO000O .iloc [:,0 ]=O0OO00OO0O0O0OOO0 .iloc [:,13 ].copy (deep =True )#line:119
27
+ for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in O0OO00OO0O0O0OOO0 .iterrows ():#line:122
28
+ if not pd .isnull (OOO0OOO00OO0O00OO [21 ]):#line:123
29
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,5 ]=OOO0OOO00OO0O00OO [21 ]#line:125
30
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,4 ]=(((OOO0OOO00OO0O00OO [21 ]/1.2 )/1.6 )*0.96 )#line:126
31
+ else :#line:128
32
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,5 ]=OOO0OOO00OO0O00OO [20 ]#line:130
33
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,4 ]=(((OOO0OOO00OO0O00OO [20 ]/1.2 )/1.6 )*0.96 )#line:131
34
+ print (OOO0OOO00OO0O00OO [21 ])#line:132
35
+ print ("COLUMN5")#line:133
36
+ print (O00OO00000OOO000O .iloc [:,5 ])#line:134
37
+ O00OO00000OOO000O .iloc [:,7 ]=O0OO00OO0O0O0OOO0 .iloc [:,11 ].copy (deep =True )#line:136
38
+ O00OO00000OOO000O .iloc [:,2 ]=O0OO00OO0O0O0OOO0 .iloc [:,24 ].copy (deep =True )#line:138
39
+ O00OO00000OOO000O .iloc [:,8 ]=O0OO00OO0O0O0OOO0 .iloc [:,9 ].copy (deep =True )#line:140
40
+ O00OO00000OOO000O .iloc [:,10 ]=O0OO00OO0O0O0OOO0 .iloc [:,3 ].copy (deep =True )#line:141
41
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [10 ]:'Brand'},inplace =True )#line:142
42
+ O00OO00000OOO000O .columns .values [10 ]='Brand'#line:143
43
+ O00OO00000OOO000O .iloc [:,30 ]=O0OO00OO0O0O0OOO0 .iloc [:,15 ].copy (deep =True )#line:145
44
+ O00OO00000OOO000O .iloc [:,31 ]=O0OO00OO0O0O0OOO0 .iloc [:,5 ].copy (deep =True )#line:146
45
+ O00OO00000OOO000O .iloc [:,32 ]=O0OO00OO0O0O0OOO0 .iloc [:,2 ].copy (deep =True )#line:147
46
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [8 ]:'Size 1'},inplace =True )#line:149
47
+ print (list (O00OO00000OOO000O .columns .values ))#line:151
48
+ O00OO00000OOO000O .iloc [:,20 ]=O00OO00000OOO000O .iloc [:,20 ].astype (float )#line:160
49
+ from babel .numbers import format_currency #line:162
50
+ O00OO00000OOO000O .iloc [:,4 ]=O00OO00000OOO000O .iloc [:,4 ].apply (lambda OO00O0O000O0000O0 :format_currency (OO00O0O000O0000O0 ,currency ="GBP",locale ="en_GB"))#line:163
51
+ O00OO00000OOO000O .iloc [:,5 ]=O00OO00000OOO000O .iloc [:,5 ].apply (lambda O0O0O0O0O00OOOOOO :format_currency (O0O0O0O0O00OOOOOO ,currency ="GBP",locale ="en_GB"))#line:164
52
+ O00OO00000OOO000O .iloc [:,2 ]=O00OO00000OOO000O .iloc [:,2 ].astype (str ).str .replace ("'","")#line:168
53
+ O00OO00000OOO000O .iloc [:,24 ]=O00OO00000OOO000O .iloc [:,24 ].astype (str ).str .replace ("'","")#line:172
54
+ print ("SKU")#line:174
55
+ print (O00OO00000OOO000O .iloc [:,2 ])#line:175
56
+ print (list (O00OO00000OOO000O .columns .values ))#line:194
57
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:199
58
+ for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in O00OO00000OOO000O .iterrows ():#line:202
59
+ if O0OO00OOO0O00O00O ==0 :#line:203
60
+ print (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)'])#line:204
61
+ if " mens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:205
62
+ if " womens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:206
63
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Unisex"#line:207
64
+ else :#line:208
65
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Mens"#line:209
66
+ if " womens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:211
67
+ if " mens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:212
68
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Unisex"#line:213
69
+ else :#line:214
70
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Womens"#line:215
71
+ if " ladys"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:216
72
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Ladys"#line:217
73
+ if O0OO00OOO0O00O00O ==0 :#line:218
74
+ print (OOO0OOO00OO0O00OO [12 ])#line:219
75
+ print (O00OO00000OOO000O .iloc [:,12 ])#line:220
76
+ O00OO00000OOO000O .iloc [:,6 ]=""#line:224
77
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [0 ]:'Style Number'},inplace =True )#line:226
78
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [1 ]:'Product Name'},inplace =True )#line:227
79
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [2 ]:'Vendor SKU'},inplace =True )#line:228
80
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [3 ]:'UPC/EAN'},inplace =True )#line:229
81
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [4 ]:'Unit Cost'},inplace =True )#line:230
82
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [5 ]:'Unit MSRP'},inplace =True )#line:231
83
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:232
84
+ print (O00OO00000OOO000O .columns [6 ])#line:233
85
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [7 ]:'Colour'},inplace =True )#line:234
86
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [8 ]:'Size 1'},inplace =True )#line:236
87
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [9 ]:'Size 2'},inplace =True )#line:237
88
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [10 ]:'Brand'},inplace =True )#line:238
89
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [11 ]:'Year of Season'},inplace =True )#line:239
90
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [12 ]:'Gender'},inplace =True )#line:240
91
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [13 ]:'Manufacturer Part Code'},inplace =True )#line:241
92
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [14 ]:'Other Bar Code'},inplace =True )#line:242
93
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [15 ]:'VAT'},inplace =True )#line:243
94
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [16 ]:'Pack Qty'},inplace =True )#line:244
95
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [17 ]:'Stock Count'},inplace =True )#line:246
96
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [18 ]:'Price Band 1'},inplace =True )#line:247
97
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [19 ]:'Price Band 2'},inplace =True )#line:248
98
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [20 ]:'IE VAT'},inplace =True )#line:249
99
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [21 ]:'Unit Cost in Euros'},inplace =True )#line:250
100
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [22 ]:'MSRP in Euros'},inplace =True )#line:251
101
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [23 ]:'Commodity Codes'},inplace =True )#line:253
102
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [24 ]:'Country of Origin'},inplace =True )#line:254
103
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [30 ]:'Weight'},inplace =True )#line:256
104
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [31 ]:'Short Description'},inplace =True )#line:257
105
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [32 ]:'Long Description'},inplace =True )#line:258
106
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [33 ]:'Video Link'},inplace =True )#line:259
107
+ O00OO00000OOO000O .iloc [:,9 ]=""#line:267
108
+ O00OO00000OOO000O .iloc [:,13 ]=""#line:269
109
+ O00OO00000OOO000O .iloc [:,14 ]=""#line:271
110
+ O00OO00000OOO000O .iloc [:,16 ]=""#line:273
111
+ O00OO00000OOO000O .iloc [:,18 ]=""#line:275
112
+ O00OO00000OOO000O .iloc [:,19 ]=""#line:277
113
+ O00OO00000OOO000O .iloc [:,20 ]=""#line:279
114
+ O00OO00000OOO000O .iloc [:,21 ]=""#line:281
115
+ O00OO00000OOO000O .iloc [:,22 ]=""#line:283
116
+ O00OO00000OOO000O .iloc [:,33 ]=""#line:288
117
+ O00OO00000OOO000O .iloc [:,15 ]="20"#line:293
118
+ print (list (O00OO00000OOO000O .columns .values ))#line:295
119
+ O00OO00000OOO000O .iloc [:,3 ]=O00OO00000OOO000O .iloc [:,2 ]#line:298
120
+ O00OO00000OOO000O .columns .values [10 ]='Brand'#line:299
121
+ O00OO00000OOO000O .iloc [:,11 ]=""#line:300
122
+ O00OO00000OOO000O .iloc [:,22 ]=""#line:301
123
+ print ("SKU")#line:305
124
+ print (O00OO00000OOO000O .iloc [:,2 ])#line:306
125
+ O00OO00000OOO000O .iloc [:,23 ]=""#line:311
126
+ O00OO00000OOO000O .iloc [:,24 ]=""#line:314
127
+ O0O0O0O000OOO0OO0 =OO0O000O0O0OO0OO0 ['Variant SKU']#line:323
128
+ OO000O0O0O0O00OOO =OO0O000O0O0OO0OO0 ['Variant SKU'].duplicated ().any ()#line:324
129
+ OO000O0O0O0O00OOO =OOOO0OOO0O00O0OO0 ['SKU'].duplicated ().any ()#line:326
130
+ O000OOO0000OO000O =OOOO0OOO0O00O0OO0 [OOOO0OOO0O00O0OO0 .duplicated (['SKU'],keep =False )]#line:328
131
+ OOOOO0OOO0OO000OO =OO0O000O0O0OO0OO0 [OO0O000O0O0OO0OO0 .duplicated (['Variant SKU'],keep =False )]#line:331
132
+ OOOO0OOO0O00O0OO0 =OOOO0OOO0O00O0OO0 .set_index ('SKU')#line:335
133
+ OOOO0OOO0O00O0OO0 .reindex (O0O0O0O000OOO0OO0 )#line:340
134
+ print ("TERMINE")#line:357
135
+ O00OO00000OOO000O .iloc [:,24 ]=OOOO0OOO0O00O0OO0 .loc [:,'COO']#line:359
136
+ O00OO00000OOO000O .iloc [:,23 ]=OOOO0OOO0O00O0OO0 .loc [:,'HS Code']#line:360
137
+ O00OO00000OOO000O ['Commodity Codes']=OOOO0OOO0O00O0OO0 ['HS Code'].values #line:362
138
+ O00OO00000OOO000O ['Country of Origin']=OOOO0OOO0O00O0OO0 ['COO'].values #line:363
139
+ print ("SKU")#line:370
140
+ print (O00OO00000OOO000O .iloc [:,2 ])#line:371
141
+ OO0O0000O00OO0O0O =[]#line:376
142
+ for OO0OOO0OOOO0000O0 in range (49 ,58 ):#line:377
143
+ OO0O0000O00OO0O0O .append (str (OO0OOO0OOOO0000O0 ))#line:379
144
+ O00OO00000OOO000O [str (OO0OOO0OOOO0000O0 )]=''#line:380
145
+ O0OOO00OO0O0O00O0 =[]#line:384
146
+ for OO0OOO0OOOO0000O0 in range (0 ,24 ):#line:385
147
+ O0OOO00OO0O0O00O0 .append (34 +OO0OOO0OOOO0000O0 )#line:386
148
+ OO0OOO00O00OOOO00 =O00OO00000OOO000O .columns [O0OOO00OO0O0O00O0 ]#line:392
149
+ O0OOO0O00OO0O00O0 =['Tech Specs','Size Chart','Geometry Chart','Frame','Rear Shock','Fork','Headset','Stem','Handlebar','Bar Tape / Grip','Brakes Levers','Brake Calipers','Tyres','Wheels','Front Derailleur','Rear Derailleur','Shift Levers','Chain','Cassette','Chainset','Bottom Bracket','Pedals','Saddle','Seatpost']#line:393
150
+ OO0OOO00O00OOOO00 =O00OO00000OOO000O .columns [O0OOO00OO0O0O00O0 ]#line:394
151
+ O00OO00000OOO000O .rename (columns =dict (zip (OO0OOO00O00OOOO00 ,O0OOO0O00OO0O00O0 )),inplace =True )#line:395
152
+ O00OO00000OOO000O .iloc [:,34 :58 ]=''#line:398
153
+ print ("SKUf")#line:401
154
+ print (O00OO00000OOO000O .iloc [:,2 ])#line:402
155
+ O00000O000O0OO0O0 =O00OO00000OOO000O .loc [pd .isna (O00OO00000OOO000O .loc [:,'Product Name']),:].index #line:422
156
+ O00OO0OO0O0OO000O =O00OO00000OOO000O .loc [O00000O000O0OO0O0 ,'Image Src']#line:423
157
+ OO000OOOO000000OO =[]#line:424
158
+ for OOO0OOO00OO0O00OO in O00OO00000OOO000O .index :#line:425
159
+ if pd .notna (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO ,'Product Name']):#line:427
160
+ OOO00O00000O0O0O0 =OOO0OOO00OO0O00OO #line:429
161
+ OO0OOO0OOOO0000O0 =1 #line:430
162
+ OO0OO0O0OOOO0O0O0 =[]#line:432
163
+ OO0OO0O0OOOO0O0O0 .append (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO ,'Image Src'])#line:434
164
+ while pd .isna (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO +OO0OOO0OOOO0000O0 ,'Product Name'])and OOO0OOO00OO0O00OO +OO0OOO0OOOO0000O0 <len (O00OO00000OOO000O .index )-1 :#line:435
165
+ if "http"in str (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO +OO0OOO0OOOO0000O0 ,'Image Src']):#line:437
166
+ OO0OO0O0OOOO0O0O0 .append (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO +OO0OOO0OOOO0000O0 ,'Image Src'])#line:438
167
+ OO0OOO0OOOO0000O0 =OO0OOO0OOOO0000O0 +1 #line:439
168
+ OO000OOOO000000OO .append (OO0OO0O0OOOO0O0O0 )#line:440
169
+ OOO0O0O0OOOO0OOOO =O00OO00000OOO000O .loc [pd .notna (O00OO00000OOO000O .loc [:,'Product Name']),:].index #line:443
170
+ OO0O000OOO0O0O0O0 =0 #line:444
171
+ for OO0OOO0OOOO0000O0 in range (len (OO000OOOO000000OO )):#line:445
172
+ if OO0O000OOO0O0O0O0 <len (OO000OOOO000000OO [OO0OOO0OOOO0000O0 ]):#line:446
173
+ OO0O000OOO0O0O0O0 =len (OO000OOOO000000OO [OO0OOO0OOOO0000O0 ])#line:447
174
+ print ("SKUf")#line:448
175
+ print (O00OO00000OOO000O .iloc [:,2 ])#line:449
176
+ for O0O00000OOOO00000 in range (OO0O000OOO0O0O0O0 ):#line:453
177
+ O00OO00000OOO000O .iloc [:,25 +O0O00000OOOO00000 ]=''#line:454
178
+ O0000OO0000OOO0OO =0 #line:456
179
+ for O0OO00OOO0O00O00O in OOO0O0O0OOOO0OOOO :#line:457
180
+ for O0O00000OOOO00000 in range (len (OO000OOOO000000OO [O0000OO0000OOO0OO ])):#line:458
181
+ if OO000OOOO000000OO [O0000OO0000OOO0OO ][O0O00000OOOO00000 ]!='nan':#line:461
182
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,25 +O0O00000OOOO00000 ]=OO000OOOO000000OO [O0000OO0000OOO0OO ][O0O00000OOOO00000 ]#line:462
183
+ O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [25 +O0O00000OOOO00000 ]:'Image'+str (O0O00000OOOO00000 +1 )},inplace =True )#line:463
184
+ O0000OO0000OOO0OO =O0000OO0000OOO0OO +1 #line:465
185
+ print ("SKUf")#line:466
186
+ print (O00OO00000OOO000O .iloc [:,2 ])#line:467
187
+ O0O0O00O0OOO00OO0 =[None ]*OO0O000OOO0O0O0O0 #line:469
188
+ OOO0O000OO0OOO0OO =[None ]*OO0O000OOO0O0O0O0 #line:470
189
+ OOOOO0OOOO00OOOO0 =[None ]*OO0O000OOO0O0O0O0 #line:471
190
+ O00O0000OO0OOOO0O =[None ]*OO0O000OOO0O0O0O0 #line:472
191
+ OOOOOOO00000O00OO =[None ]*OO0O000OOO0O0O0O0 #line:473
192
+ O0O00OOO0O0OOO0O0 =[None ]*OO0O000OOO0O0O0O0 #line:474
193
+ for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in O00OO00000OOO000O .iterrows ():#line:475
194
+ if pd .notna (O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,1 ]):#line:478
195
+ for O0O00000OOOO00000 in range (0 ,OO0O000OOO0O0O0O0 ):#line:479
196
+ O0O0O00O0OOO00OO0 [O0O00000OOOO00000 ]=str ((O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,25 +O0O00000OOOO00000 ]))#line:480
197
+ OOO0O000OO0OOO0OO [O0O00000OOOO00000 ]=str ((O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,1 ]))#line:486
198
+ OOOOO0OOOO00OOOO0 [O0O00000OOOO00000 ]=str ((O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,10 ]))#line:487
199
+ O00O0000OO0OOOO0O [O0O00000OOOO00000 ]=str ((O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]))#line:488
200
+ OOOOOOO00000O00OO [O0O00000OOOO00000 ]=str ((O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,31 ]))#line:489
201
+ O0O00OOO0O0OOO0O0 [O0O00000OOOO00000 ]=str ((O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,32 ]))#line:490
202
+ else :#line:492
203
+ for O0O00000OOOO00000 in range (0 ,OO0O000OOO0O0O0O0 ):#line:493
204
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,25 +O0O00000OOOO00000 ]=O0O0O00O0OOO00OO0 [O0O00000OOOO00000 ]#line:494
205
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,1 ]=OOO0O000OO0OOO0OO [O0O00000OOOO00000 ]#line:500
206
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,10 ]=OOOOO0OOOO00OOOO0 [O0O00000OOOO00000 ]#line:501
207
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]=O00O0000OO0OOOO0O [O0O00000OOOO00000 ]#line:502
208
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,31 ]=OOOOOOO00000O00OO [O0O00000OOOO00000 ]#line:503
209
+ O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,32 ]=O0O00OOO0O0OOO0O0 [O0O00000OOOO00000 ]#line:504
210
+ print ("SKUf")#line:508
211
+ print (O00OO00000OOO000O .iloc [:,2 ])#line:509
212
+ return O00OO00000OOO000O #line:518
213
+ def convert_df (OOO00OO0OO0OOOOO0 ):#line:521
214
+ return OOO00OO0OO0OOOOO0 .to_csv (index =False ).encode ('utf_8_sig')#line:522
215
+ if uploaded_file and uploaded_file2 :#line:524
216
+ df3 =ConvertCitrus (df ,df2 )#line:525
217
+ csv =convert_df (df3 )#line:529
218
+ st .download_button ("Press to Download",csv ,"file.csv","text/csv",key ='download-csv')#line:537