Spaces:
Running
Running
File size: 11,143 Bytes
cc2570f 692ccba cc2570f 692ccba cc2570f 692ccba cc2570f 883f9a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import streamlit as st
import requests
from transformers import pipeline
# Enter your TMDb API key here
TMDB_API_KEY = '2cc77b08a475b510f54a0dcca2c5c0c7'
IMAGE_BASE_URL = "https://image.tmdb.org/t/p/w200" # TMDb base URL for poster images (width 200)
@st.cache_resource
def load_emotion_analyzer():
return pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
emotion_analyzer = load_emotion_analyzer()
def analyze_emotion(description):
"""Analyze emotion of a movie's description."""
emotions = emotion_analyzer(description)
return emotions[0]['label'] # Return the top emotion
def get_movie_genres():
"""Fetches movie genres from TMDb API and returns a dictionary of genres."""
url = f'https://api.themoviedb.org/3/genre/movie/list?api_key={TMDB_API_KEY}&language=en-US'
response = requests.get(url)
if response.status_code == 200:
genres = response.json().get('genres', [])
return {genre['name']: genre['id'] for genre in genres}
else:
return None # Return None if the request failed
def get_top_movies_by_genre(genre_id):
"""Fetches the top 10 highest-rated movies for a given genre ID from TMDb, sorted by title length."""
url = f'https://api.themoviedb.org/3/discover/movie?api_key={TMDB_API_KEY}&language=en-US&sort_by=vote_average.desc&vote_count.gte=1000&with_genres={genre_id}'
response = requests.get(url)
if response.status_code == 200:
movies = response.json().get('results', [])[:10] # Get the top 10 results
# Sort movies by title length, shortest to longest
return sorted([(movie['title'], movie['vote_average'], movie['id'], movie['poster_path']) for movie in movies], key=lambda x: len(x[0]))
else:
return None
def get_similar_movies(movie_id, genre_id):
"""Fetches similar movies for a given movie ID from TMDb and filters by the selected genre."""
url = f'https://api.themoviedb.org/3/movie/{movie_id}/similar?api_key={TMDB_API_KEY}&language=en-US'
response = requests.get(url)
if response.status_code == 200:
movies = response.json().get('results', [])[:15]
# Include the movie description (overview) in the returned values
return [
(movie['title'], movie['vote_average'], movie['poster_path'], movie['id'], movie['overview'])
for movie in movies if genre_id in movie['genre_ids'] and 'overview' in movie
]
else:
return None
def get_movie_details(movie_id):
"""Fetches detailed information for a given movie ID from TMDb, including description, release date, director, and cast."""
url = f'https://api.themoviedb.org/3/movie/{movie_id}?api_key={TMDB_API_KEY}&language=en-US&append_to_response=credits'
response = requests.get(url)
if response.status_code == 200:
movie = response.json()
directors = [member['name'] for member in movie['credits']['crew'] if member['job'] == 'Director']
cast = [member['name'] for member in movie['credits']['cast'][:5]] # Get top 5 cast members
return {
"title": movie['title'],
"rating": movie['vote_average'],
"description": movie['overview'],
"poster_path": movie['poster_path'],
"release_date": movie['release_date'],
"director": ", ".join(directors),
"cast": ", ".join(cast)
}
else:
return None
# Initialize session state to store selected movies and recommendations
if 'selected_movies' not in st.session_state:
st.session_state['selected_movies'] = set()
if 'recommendations' not in st.session_state:
st.session_state['recommendations'] = []
if 'last_genre' not in st.session_state:
st.session_state['last_genre'] = None
# Streamlit app title
st.title("Movie Recommender")
# CSS for alignment and button styling
st.markdown("""
<style>
.movie-container {
display: flex;
flex-direction: column;
align-items: center;
justify-content: flex-start;
}
.movie-caption {
min-height: 50px; /* Set a consistent height for caption sections */
display: flex;
align-items: center;
justify-content: center;
text-align: center;
}
.movie-caption button {
width: 100%;
}
</style>
""", unsafe_allow_html=True)
# Fetch genres from TMDb and display in a dropdown
genres = get_movie_genres()
if genres is None:
st.error("Failed to load movie genres. Please check your API key or connection.")
else:
genre_name = st.selectbox("Select a movie genre:", [""] + list(genres.keys())) # Include an empty option
# Check if genre has changed, and reset selections if so
if genre_name != st.session_state['last_genre']:
st.session_state['selected_movies'].clear()
st.session_state['recommendations'].clear()
st.session_state['last_genre'] = genre_name
# Only fetch and display movies if a genre is selected
if genre_name:
st.write("Please select at least one movie to generate recommendations.")
genre_id = genres[genre_name] # Get the genre ID based on the selected genre name
top_movies = get_top_movies_by_genre(genre_id) # Fetch top 10 movies in this genre, sorted by title length
# Check if movies were successfully loaded
if top_movies is None:
st.error("Failed to load movies. Please check your API key or connection.")
else:
# Display the top 10 movies as clickable titles in a 5x2 grid layout with aligned rows
st.write(f"Top 10 movies in the {genre_name} genre:")
columns = st.columns(5) # Create 5 columns for each row
# First row of 5 movies
for index, (title, _, movie_id, poster_path) in enumerate(top_movies[:5]):
col = columns[index]
with col:
st.markdown("<div class='movie-container'>", unsafe_allow_html=True)
# Display image
st.image(f"{IMAGE_BASE_URL}{poster_path}", use_container_width=True)
# Display clickable title as a button to toggle selection, with consistent height
if st.button(f"{title} {'✅' if movie_id in st.session_state['selected_movies'] else ''}", key=f"title_{movie_id}"):
if movie_id in st.session_state['selected_movies']:
st.session_state['selected_movies'].remove(movie_id)
else:
st.session_state['selected_movies'].add(movie_id)
st.markdown("</div>", unsafe_allow_html=True)
# Second row of 5 movies
for index, (title, _, movie_id, poster_path) in enumerate(top_movies[5:]):
col = columns[index]
with col:
st.markdown("<div class='movie-container'>", unsafe_allow_html=True)
# Display image
st.image(f"{IMAGE_BASE_URL}{poster_path}", use_container_width=True)
# Display clickable title as a button to toggle selection, with consistent height
if st.button(f"{title} {'✅' if movie_id in st.session_state['selected_movies'] else ''}", key=f"title_2_{movie_id}"):
if movie_id in st.session_state['selected_movies']:
st.session_state['selected_movies'].remove(movie_id)
else:
st.session_state['selected_movies'].add(movie_id)
st.markdown("</div>", unsafe_allow_html=True)
# Button to generate recommendations based on selected movies
if st.button("Show Recommendations"):
if st.session_state['selected_movies']:
# Step 1: Collect emotions of user-selected movies
with st.spinner("Analyzing emotions of selected movies..."):
selected_emotions = []
for movie_id in st.session_state['selected_movies']:
movie_details = get_movie_details(movie_id)
if movie_details:
emotion = analyze_emotion(movie_details["description"])
selected_emotions.append(emotion)
# Step 2: Collect similar movies for all selected movies
all_similar_movies = []
for movie_id in st.session_state['selected_movies']:
similar_movies = get_similar_movies(movie_id, genre_id)
if similar_movies:
all_similar_movies.extend(similar_movies)
# Step 3: Filter similar movies by matching emotions and remove duplicates
recommendations = []
seen_movie_ids = set(st.session_state['selected_movies']) # Start with user-selected movies to exclude them
with st.spinner("Filtering movies by description emotion..."):
for title, rating, poster_path, movie_id, description in all_similar_movies:
if movie_id not in seen_movie_ids: # Exclude already-seen movies
movie_emotion = analyze_emotion(description)
if movie_emotion in selected_emotions:
seen_movie_ids.add(movie_id) # Mark this movie as seen to prevent duplicates
recommendations.append((title, rating, poster_path, movie_id, movie_emotion))
# Store unique recommendations in session state
st.session_state['recommendations'] = recommendations
# Step 4: Display final recommendations
if st.session_state['recommendations']:
st.write("Based on your selections, you might also enjoy these top movies:")
for title, rating, poster_path, movie_id, emotion in sorted(st.session_state['recommendations'], key=lambda x: x[1], reverse=True)[:5]:
movie_details = get_movie_details(movie_id)
if movie_details:
col1, col2 = st.columns([1, 3])
with col1:
st.image(f"{IMAGE_BASE_URL}{movie_details['poster_path']}", use_container_width=True)
with col2:
st.markdown(f"**Title:** {movie_details['title']}")
st.markdown(f"**TMDb Rating:** {movie_details['rating']}")
st.markdown(f"**Description:** {movie_details['description']}")
# Additional Information button with overlay using expander
with st.expander("Additional Information"):
st.markdown(f"**Release Date:** {movie_details['release_date']}")
st.markdown(f"**Director:** {movie_details['director']}")
st.markdown(f"**Cast:** {movie_details['cast']}")
else:
st.warning("No movies matched your selected emotions.") |