Update app.py
Browse files
app.py
CHANGED
@@ -284,23 +284,33 @@ API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-In
|
|
284 |
qwen = os.getenv("QWEN")
|
285 |
headers = {"Authorization": f"Bearer {qwen}"}
|
286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
def validate_and_generate_documentation(api_url, headers, gemini_output, file_contents, functionality_description):
|
288 |
-
"""
|
289 |
-
|
|
|
|
|
|
|
290 |
prompt = f"""
|
291 |
User-specified functionality: '{functionality_description}'
|
292 |
Functions identified by Gemini:
|
293 |
{gemini_output}
|
294 |
|
295 |
-
Project files:
|
296 |
-
"""
|
297 |
-
for file_path, content in file_contents.items():
|
298 |
-
# Split content into manageable chunks if necessary
|
299 |
-
chunks = split_into_chunks(content, chunk_size=3000) # Adjust chunk size based on model's max input length
|
300 |
-
for idx, chunk in enumerate(chunks):
|
301 |
-
prompt += f"File: {os.path.basename(file_path)} (Part {idx + 1})\n{chunk}\n\n"
|
302 |
-
|
303 |
-
prompt += """
|
304 |
Task:
|
305 |
1. Validate if the functions identified by Gemini are sufficient for implementing the functionality.
|
306 |
2. If not, identify all additional functions required.
|
@@ -322,6 +332,10 @@ def validate_and_generate_documentation(api_url, headers, gemini_output, file_co
|
|
322 |
- Outputs: <Details of outputs and their types>
|
323 |
- Dependencies: <Dependencies on other modules/functions>
|
324 |
- Data structures: <Details of data structures used>
|
|
|
|
|
|
|
|
|
325 |
"""
|
326 |
|
327 |
# Send the prompt to the Hugging Face API
|
@@ -332,15 +346,21 @@ def validate_and_generate_documentation(api_url, headers, gemini_output, file_co
|
|
332 |
if response.status_code == 200:
|
333 |
api_response = response.json()
|
334 |
if isinstance(api_response, list): # If response is a list, extract the first element
|
335 |
-
|
336 |
elif isinstance(api_response, dict): # Handle dict response
|
337 |
-
|
338 |
else:
|
339 |
raise ValueError("Unexpected response format from Hugging Face API.")
|
|
|
|
|
|
|
|
|
340 |
else:
|
341 |
raise ValueError(f"Error: {response.status_code}, {response.text}")
|
342 |
|
343 |
|
|
|
|
|
344 |
def generate_documentation_page():
|
345 |
st.subheader(f"Generate Documentation for {st.session_state.current_project}")
|
346 |
st.write("Enter the functionality or parts of the project for which you'd like to identify relevant functions.")
|
|
|
284 |
qwen = os.getenv("QWEN")
|
285 |
headers = {"Authorization": f"Bearer {qwen}"}
|
286 |
|
287 |
+
def clean_output(output):
|
288 |
+
"""
|
289 |
+
Cleans the output from the Hugging Face model to ensure no unnecessary details are included.
|
290 |
+
"""
|
291 |
+
# Remove any remnants of prompts or file content (heuristically clean up known patterns)
|
292 |
+
lines = output.splitlines()
|
293 |
+
filtered_lines = [
|
294 |
+
line for line in lines if not (
|
295 |
+
line.startswith("File:") or
|
296 |
+
line.startswith("User-specified functionality:") or
|
297 |
+
line.startswith("Functions identified by Gemini:") or
|
298 |
+
line.strip() == ""
|
299 |
+
)
|
300 |
+
]
|
301 |
+
return "\n".join(filtered_lines)
|
302 |
+
|
303 |
def validate_and_generate_documentation(api_url, headers, gemini_output, file_contents, functionality_description):
|
304 |
+
"""
|
305 |
+
Uses the Hugging Face Inference API to validate functions and generate documentation.
|
306 |
+
Ensures that the output excludes file content and internal prompts.
|
307 |
+
"""
|
308 |
+
# Generate the prompt for the Qwen model
|
309 |
prompt = f"""
|
310 |
User-specified functionality: '{functionality_description}'
|
311 |
Functions identified by Gemini:
|
312 |
{gemini_output}
|
313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
Task:
|
315 |
1. Validate if the functions identified by Gemini are sufficient for implementing the functionality.
|
316 |
2. If not, identify all additional functions required.
|
|
|
332 |
- Outputs: <Details of outputs and their types>
|
333 |
- Dependencies: <Dependencies on other modules/functions>
|
334 |
- Data structures: <Details of data structures used>
|
335 |
+
- Algorithmic Details: <Description of the algorithm used in the function>
|
336 |
+
- Error Handling: <Description of how the function handles errors>
|
337 |
+
- Assumptions: <Any assumptions the function makes>
|
338 |
+
- Example Usage: <Example demonstrating how to use the function>
|
339 |
"""
|
340 |
|
341 |
# Send the prompt to the Hugging Face API
|
|
|
346 |
if response.status_code == 200:
|
347 |
api_response = response.json()
|
348 |
if isinstance(api_response, list): # If response is a list, extract the first element
|
349 |
+
output = api_response[0].get("generated_text", "No output generated.")
|
350 |
elif isinstance(api_response, dict): # Handle dict response
|
351 |
+
output = api_response.get("generated_text", "No output generated.")
|
352 |
else:
|
353 |
raise ValueError("Unexpected response format from Hugging Face API.")
|
354 |
+
|
355 |
+
# Clean the output to exclude any file contents or prompts
|
356 |
+
cleaned_output = clean_output(output)
|
357 |
+
return cleaned_output
|
358 |
else:
|
359 |
raise ValueError(f"Error: {response.status_code}, {response.text}")
|
360 |
|
361 |
|
362 |
+
|
363 |
+
|
364 |
def generate_documentation_page():
|
365 |
st.subheader(f"Generate Documentation for {st.session_state.current_project}")
|
366 |
st.write("Enter the functionality or parts of the project for which you'd like to identify relevant functions.")
|