File size: 8,424 Bytes
7a2c9ac
 
 
 
 
 
 
f1b9e13
 
4b543c3
 
7a2c9ac
4b42627
7a2c9ac
f80cddb
 
 
 
 
 
 
 
 
 
 
7a2c9ac
f80cddb
 
 
 
 
 
 
7a2c9ac
f80cddb
8afac0c
 
f80cddb
 
1e9ca29
 
f80cddb
0c39f3c
 
 
 
f80cddb
0c39f3c
 
 
 
f80cddb
df87b80
0c39f3c
 
 
65edc3a
 
 
 
708c129
0c39f3c
 
708c129
0c39f3c
 
 
 
 
 
65edc3a
 
f80cddb
65edc3a
f80cddb
 
6744dfe
f80cddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b696ba4
8afac0c
 
 
 
65edc3a
 
 
 
 
 
 
 
 
 
 
 
8afac0c
 
885c69a
7d977ce
8afac0c
65edc3a
 
 
 
 
 
8afac0c
65edc3a
 
 
8afac0c
65edc3a
 
8afac0c
65edc3a
 
 
f80cddb
65edc3a
 
 
 
 
 
 
 
 
 
f80cddb
69543a2
65edc3a
69543a2
f80cddb
 
0f94b4f
 
 
 
f80cddb
 
65edc3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

import torch
import torch.nn.functional as F
import logging
import os
import os.path as osp

os.system('nvidia-smi')

import cupy

import sys
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

try:
    from mmcv.utils import Config, DictAction
except:
    from mmengine import Config, DictAction
from mono.utils.logger import setup_logger
import glob
from mono.utils.comm import init_env
from mono.model.monodepth_model import get_configured_monodepth_model
from mono.utils.running import load_ckpt
from mono.utils.do_test import transform_test_data_scalecano, get_prediction
from mono.utils.custom_data import load_from_annos, load_data

from mono.utils.avg_meter import MetricAverageMeter
from mono.utils.visualization import save_val_imgs, create_html, save_raw_imgs, save_normal_val_imgs
import cv2
from tqdm import tqdm
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

from mono.utils.unproj_pcd import reconstruct_pcd, save_point_cloud
from mono.utils.transform import gray_to_colormap
from mono.utils.visualization import vis_surface_normal
import gradio as gr

#torch.hub.download_url_to_file('https://images.unsplash.com/photo-1437622368342-7a3d73a34c8f', 'turtle.jpg')
#torch.hub.download_url_to_file('https://images.unsplash.com/photo-1519066629447-267fffa62d4b', 'lions.jpg')

cfg_large = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.large.py')
model_large = get_configured_monodepth_model(cfg_large, )
model_large, _,  _, _ = load_ckpt('./weight/metric_depth_vit_large_800k.pth', model_large, strict_match=False)
model_large.eval()

cfg_small = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.small.py')
model_small = get_configured_monodepth_model(cfg_small, )
model_small, _,  _, _ = load_ckpt('./weight/metric_depth_vit_small_800k.pth', model_small, strict_match=False)
model_small.eval()

device = "cuda"
model_large.to(device)
model_small.to(device)


outputs_dir = "./outs"

def depth_normal(img_path, model_selection="vit-small"):
    if model_selection == "vit-small":
        model = model_small
        cfg = cfg_small
    elif model_selection == "vit-large":
        model = model_large
        cfg = cfg_large

    else:
        raise NotImplementedError
    
    img = Image.open(img_path)

    cv_image = np.array(img) 
    img = cv_image
    img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
    intrinsic = [1000.0, 1000.0, img.shape[1]/2, img.shape[0]/2]
    rgb_input, cam_models_stacks, pad, label_scale_factor = transform_test_data_scalecano(img, intrinsic, cfg.data_basic)

    with torch.no_grad():
        pred_depth, pred_depth_scale, scale, output = get_prediction(
                    model = model,
                    input = rgb_input,
                    cam_model = cam_models_stacks,
                    pad_info = pad,
                    scale_info = label_scale_factor,
                    gt_depth = None,
                    normalize_scale = cfg.data_basic.depth_range[1],
                    ori_shape=[img.shape[0], img.shape[1]],
                )

        pred_normal = output['normal_out_list'][0][:, :3, :, :] 
        H, W = pred_normal.shape[2:]
        pred_normal = pred_normal[:, :, pad[0]:H-pad[1], pad[2]:W-pad[3]]

    pred_depth = pred_depth.squeeze().cpu().numpy()
    pred_depth[pred_depth<0] = 0
    pred_color = gray_to_colormap(pred_depth)
    
    ##formatted = (output * 255 / np.max(output)).astype('uint8')
    
    path_output_dir = os.path.splitext(os.path.basename(img_path))[0] + datetime.now().strftime('%Y%m%d-%H%M%S')
    path_output_dir = os.path.join(path_output_dir, outputs_dir)
    os.makedirs(path_output_dir, exist_ok=True)

    name_base = os.path.splitext(os.path.basename(img_path))[0]

    depth_np = pred_depth
    normal_np = torch.nn.functional.interpolate(pred_normal, [img.shape[0], img.shape[1]], mode='bilinear').squeeze().cpu().numpy()
    normal_np = normal_np.transpose(1,2,0)

    pred_normal = pred_normal.squeeze()
    if pred_normal.size(0) == 3:
        pred_normal = pred_normal.permute(1,2,0)
    pred_color_normal = vis_surface_normal(pred_normal)

    depth_path = os.path.join(path_output_dir, f"{name_base}_depth.npy")
    normal_path = os.path.join(path_output_dir, f"{name_base}_normal.npy")

    np.save(normal_path, normal_np)
    np.save(depth_path, depth_np)
    
    ori_w = img.shape[1]
    ori_h = img.shape[0]

    img = Image.fromarray(pred_color)
    #img = img.resize((int(300 * ori_w/ ori_h), 300))

    img_normal = Image.fromarray(pred_color_normal)
    #img_normal = img_normal.resize((int(300 * ori_w/ ori_h), 300))

    return img, img_normal, [depth_path, normal_path]
        
def reconstruction(img_path, files, focal_length, reconstructed_file):
    img = Image.open(img_path)
    cv_image = np.array(img) 
    img = cv_image

    depth_np = np.load(files[0])
    pcd = reconstruct_pcd(depth_np * focal_length / 1000, focal_length, focal_length, img.shape[1]/2, img.shape[0]/2)
    pcd_path = files[0].replace('_depth.npy', '.ply')
    save_point_cloud(pcd.reshape((-1, 3)), img.reshape(-1, 3), pcd_path)
    return [pcd_path]

title = "Metric3D"
description = "Gradio demo for Metric3D which takes in a single image for computing metric depth and surface normal. To use it, simply upload your image, or click one of the examples to load them. Learn more from our paper linked below."
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2307.10984.pdf'>Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image</a> | <a href='https://github.com/YvanYin/Metric3D'>Github Repo</a></p>"

examples = [
    ["files/museum.jpg"],
    ["files/terra.jpg"],
    ["files/underwater.jpg"],
    ["files/venue.jpg"]
]

def run_demo():

    _TITLE = '''Metric3Dv2: A versatile monocular geometric foundation model for zero-shot metric depth and surface normal estimation'''
    _DESCRIPTION = description

    with gr.Blocks(title=_TITLE) as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
        gr.Markdown(_DESCRIPTION)
        with gr.Row(variant='panel'):
            with gr.Column(scale=1):
                #input_image = gr.Image(type='pil', label='Original Image')
                input_image = gr.Image(type='filepath', height=300, label='Input image')
                
                example_folder = os.path.join(os.path.dirname(__file__), "./files")
                example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
                gr.Examples(
                    examples=example_fns,
                    inputs=[input_image],
                    cache_examples=False,
                    label='Examples (click one of the images below to start)',
                    examples_per_page=30
                )

                model_choice = gr.Dropdown(["vit-small", "vit-large"], label="Model", info="Select a model type",  value="vit-small")
                run_btn = gr.Button('Predict', variant='primary', interactive=True)
        
            with gr.Column(scale=1):
                depth = gr.Image(interactive=False, label="Depth")
                normal = gr.Image(interactive=False, label="Normal")

        with gr.Row():
            files = gr.Files(
                label = "Depth and Normal (numpy)",
                elem_id = "download",
                interactive=False,
            )

        with gr.Row():
            recon_btn = gr.Button('Is focal length available? If Yes, Enter and Click Here for Metric 3D Reconstruction', variant='primary', interactive=True)
            focal_length = gr.Number(value=1000, label="Focal Length")
        
        with gr.Row():
            reconstructed_file = gr.Files(
                label = "3D pointclouds (plyfile)",
                elem_id = "download",
                interactive=False
            )

        run_btn.click(fn=depth_normal, 
                        inputs=[input_image,
                                model_choice],
                        outputs=[depth, normal, files]
                    )
        recon_btn.click(fn=reconstruction,
                        inputs=[input_image, files, focal_length],
                        outputs=[reconstructed_file]
                        )

        demo.queue().launch(share=True, max_threads=80)


if __name__ == '__main__':
    fire.Fire(run_demo)