File size: 17,016 Bytes
8a32844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
import matplotlib.pyplot as plt


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self) -> None:
        self.reset()

    def reset(self) -> None:
        self.val = np.longdouble(0.0)
        self.avg = np.longdouble(0.0)
        self.sum = np.longdouble(0.0)
        self.count = np.longdouble(0.0)

    def update(self, val, n: float = 1) -> None:
        self.val = val
        self.sum += val
        self.count += n
        self.avg = self.sum / (self.count + 1e-6)

class MetricAverageMeter(AverageMeter):
    """ 
    An AverageMeter designed specifically for evaluating segmentation results.
    """
    def __init__(self, metrics: list) -> None:
        """ Initialize object. """
        # average meters for metrics
        self.abs_rel = AverageMeter()
        self.rmse = AverageMeter()
        self.silog = AverageMeter()
        self.delta1 = AverageMeter()
        self.delta2 = AverageMeter()
        self.delta3 = AverageMeter()

        self.metrics = metrics

        self.consistency = AverageMeter()
        self.log10 = AverageMeter()
        self.rmse_log = AverageMeter()
        self.sq_rel = AverageMeter()

        # normal
        self.normal_mean = AverageMeter()
        self.normal_rmse = AverageMeter()
        self.normal_a1 = AverageMeter()
        self.normal_a2 = AverageMeter()
        
        self.normal_median = AverageMeter()
        self.normal_a3 = AverageMeter()
        self.normal_a4 = AverageMeter()
        self.normal_a5 = AverageMeter()


    def update_metrics_cpu(self,
        pred: torch.Tensor,
        target: torch.Tensor,
        mask: torch.Tensor,):
        """
        Update metrics on cpu
        """

        assert pred.shape == target.shape

        if len(pred.shape) == 3:
            pred = pred[:, None, :, :]
            target = target[:, None, :, :]
            mask = mask[:, None, :, :]
        elif len(pred.shape) == 2:
            pred = pred[None, None, :, :]
            target = target[None, None, :, :]
            mask = mask[None, None, :, :]


        # Absolute relative error
        abs_rel_sum, valid_pics = get_absrel_err(pred, target, mask)
        abs_rel_sum = abs_rel_sum.numpy()
        valid_pics = valid_pics.numpy()
        self.abs_rel.update(abs_rel_sum, valid_pics)
        
        # squared relative error
        sqrel_sum, _ = get_sqrel_err(pred, target, mask)
        sqrel_sum = sqrel_sum.numpy()
        self.sq_rel.update(sqrel_sum, valid_pics)

        # root mean squared error
        rmse_sum, _ = get_rmse_err(pred, target, mask)
        rmse_sum = rmse_sum.numpy()
        self.rmse.update(rmse_sum, valid_pics)
        
        # log root mean squared error
        log_rmse_sum, _ = get_rmse_log_err(pred, target, mask)
        log_rmse_sum = log_rmse_sum.numpy()
        self.rmse.update(log_rmse_sum, valid_pics)
        
        # log10 error
        log10_sum, _ = get_log10_err(pred, target, mask)
        log10_sum = log10_sum.numpy()
        self.rmse.update(log10_sum, valid_pics)

        # scale-invariant root mean squared error in log space
        silog_sum, _ = get_silog_err(pred, target, mask)
        silog_sum = silog_sum.numpy()
        self.silog.update(silog_sum, valid_pics)

        # ratio error, delta1, ....
        delta1_sum, delta2_sum, delta3_sum, _ = get_ratio_error(pred, target, mask)
        delta1_sum = delta1_sum.numpy()
        delta2_sum = delta2_sum.numpy()
        delta3_sum = delta3_sum.numpy()

        self.delta1.update(delta1_sum, valid_pics)
        self.delta2.update(delta1_sum, valid_pics)
        self.delta3.update(delta1_sum, valid_pics)
        

    def update_metrics_gpu(
        self,
        pred: torch.Tensor,
        target: torch.Tensor,
        mask: torch.Tensor,
        is_distributed: bool,
        pred_next: torch.tensor = None,
        pose_f1_to_f2: torch.tensor = None,
        intrinsic: torch.tensor = None):
        """ 
        Update metric on GPU. It supports distributed processing. If multiple machines are employed, please
        set 'is_distributed' as True.
        """
        assert pred.shape == target.shape

        if len(pred.shape) == 3:
            pred = pred[:, None, :, :]
            target = target[:, None, :, :]
            mask = mask[:, None, :, :]
        elif len(pred.shape) == 2:
            pred = pred[None, None, :, :]
            target = target[None, None, :, :]
            mask = mask[None, None, :, :]


        # Absolute relative error
        abs_rel_sum, valid_pics = get_absrel_err(pred, target, mask)
        if is_distributed:
            dist.all_reduce(abs_rel_sum), dist.all_reduce(valid_pics)
        abs_rel_sum = abs_rel_sum.cpu().numpy()
        valid_pics = int(valid_pics)
        self.abs_rel.update(abs_rel_sum, valid_pics)

        # root mean squared error
        rmse_sum, _ = get_rmse_err(pred, target, mask)
        if is_distributed:
            dist.all_reduce(rmse_sum)
        rmse_sum = rmse_sum.cpu().numpy()
        self.rmse.update(rmse_sum, valid_pics)
        
        # log root mean squared error
        log_rmse_sum, _ = get_rmse_log_err(pred, target, mask)
        if is_distributed:
            dist.all_reduce(log_rmse_sum)
        log_rmse_sum = log_rmse_sum.cpu().numpy()
        self.rmse_log.update(log_rmse_sum, valid_pics)
    
        # log10 error
        log10_sum, _ = get_log10_err(pred, target, mask)
        if is_distributed:
            dist.all_reduce(log10_sum)
        log10_sum = log10_sum.cpu().numpy()
        self.log10.update(log10_sum, valid_pics)

        # scale-invariant root mean squared error in log space
        silog_sum, _ = get_silog_err(pred, target, mask)
        if is_distributed:
            dist.all_reduce(silog_sum)
        silog_sum = silog_sum.cpu().numpy()
        self.silog.update(silog_sum, valid_pics)

        # ratio error, delta1, ....
        delta1_sum, delta2_sum, delta3_sum, _ = get_ratio_error(pred, target, mask)
        if is_distributed:
            dist.all_reduce(delta1_sum), dist.all_reduce(delta2_sum), dist.all_reduce(delta3_sum)
        delta1_sum = delta1_sum.cpu().numpy()
        delta2_sum = delta2_sum.cpu().numpy()
        delta3_sum = delta3_sum.cpu().numpy()

        self.delta1.update(delta1_sum, valid_pics)
        self.delta2.update(delta2_sum, valid_pics)
        self.delta3.update(delta3_sum, valid_pics)

        # video consistency error
        consistency_rel_sum, valid_warps = get_video_consistency_err(pred, pred_next, pose_f1_to_f2, intrinsic)
        if is_distributed:
            dist.all_reduce(consistency_rel_sum), dist.all_reduce(valid_warps)
        consistency_rel_sum = consistency_rel_sum.cpu().numpy()
        valid_warps = int(valid_warps)
        self.consistency.update(consistency_rel_sum, valid_warps)

    ## for surface normal
    def update_normal_metrics_gpu(
        self,
        pred: torch.Tensor, # (B, 3, H, W)
        target: torch.Tensor, # (B, 3, H, W)
        mask: torch.Tensor, # (B, 1, H, W)
        is_distributed: bool,
        ):
        """ 
        Update metric on GPU. It supports distributed processing. If multiple machines are employed, please
        set 'is_distributed' as True.
        """
        assert pred.shape == target.shape

        valid_pics = torch.sum(mask, dtype=torch.float32) + 1e-6

        if valid_pics < 10:
            return

        mean_error = rmse_error = a1_error = a2_error = dist_node_cnt = valid_pics
        normal_error = torch.cosine_similarity(pred, target, dim=1)
        normal_error = torch.clamp(normal_error, min=-1.0, max=1.0)
        angle_error = torch.acos(normal_error) * 180.0 / torch.pi
        angle_error = angle_error[:, None, :, :]
        angle_error = angle_error[mask]
        # Calculation error
        mean_error = angle_error.sum() / valid_pics
        rmse_error = torch.sqrt( torch.sum(torch.square(angle_error)) / valid_pics )
        median_error = angle_error.median()
        a1_error = 100.0 * (torch.sum(angle_error < 5) / valid_pics)
        a2_error = 100.0 * (torch.sum(angle_error < 7.5) / valid_pics)
        
        a3_error = 100.0 * (torch.sum(angle_error < 11.25) / valid_pics)
        a4_error = 100.0 * (torch.sum(angle_error < 22.5) / valid_pics)
        a5_error = 100.0 * (torch.sum(angle_error < 30) / valid_pics)

        # if valid_pics > 1e-5:
        # If the current node gets data with valid normal
        dist_node_cnt = (valid_pics - 1e-6) / valid_pics

        if is_distributed:
            dist.all_reduce(dist_node_cnt)
            dist.all_reduce(mean_error)
            dist.all_reduce(rmse_error)
            dist.all_reduce(a1_error)
            dist.all_reduce(a2_error)
            
            dist.all_reduce(a3_error)
            dist.all_reduce(a4_error)
            dist.all_reduce(a5_error)

        dist_node_cnt = dist_node_cnt.cpu().numpy()
        self.normal_mean.update(mean_error.cpu().numpy(), dist_node_cnt)
        self.normal_rmse.update(rmse_error.cpu().numpy(), dist_node_cnt)
        self.normal_a1.update(a1_error.cpu().numpy(), dist_node_cnt)
        self.normal_a2.update(a2_error.cpu().numpy(), dist_node_cnt)

        self.normal_median.update(median_error.cpu().numpy(), dist_node_cnt)
        self.normal_a3.update(a3_error.cpu().numpy(), dist_node_cnt)
        self.normal_a4.update(a4_error.cpu().numpy(), dist_node_cnt)
        self.normal_a5.update(a5_error.cpu().numpy(), dist_node_cnt)


    def get_metrics(self,):
        """
        """
        metrics_dict = {}
        for metric in self.metrics:
            metrics_dict[metric] = self.__getattribute__(metric).avg
        return metrics_dict


    def get_metrics(self,):
        """
        """
        metrics_dict = {}
        for metric in self.metrics:
            metrics_dict[metric] = self.__getattribute__(metric).avg
        return metrics_dict

def get_absrel_err(pred: torch.tensor,
                    target: torch.tensor,
                    mask: torch.tensor,
                    ):
    """
    Computes absolute relative error.
    Tasks preprocessed depths (no nans, infs and non-positive values).
    pred, target, and mask should be in the shape of [b, c, h, w]
    """

    assert len(pred.shape) == 4, len(target.shape) == 4
    b, c, h, w = pred.shape
    mask = mask.to(torch.float)
    t_m = target * mask
    p_m = pred * mask

    # Mean Absolute Relative Error
    rel = torch.abs(t_m - p_m) / (t_m + 1e-10) # compute errors
    abs_rel_sum = torch.sum(rel.reshape((b, c, -1)), dim=2) # [b, c]
    num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
    abs_err = abs_rel_sum / (num + 1e-10)
    valid_pics = torch.sum(num > 0)
    return torch.sum(abs_err), valid_pics

def get_sqrel_err(pred: torch.tensor,
                    target: torch.tensor,
                    mask: torch.tensor,
                    ):
    """
    Computes squared relative error.
    Tasks preprocessed depths (no nans, infs and non-positive values).
    pred, target, and mask should be in the shape of [b, c, h, w]
    """

    assert len(pred.shape) == 4, len(target.shape) == 4
    b, c, h, w = pred.shape
    mask = mask.to(torch.float)
    t_m = target * mask
    p_m = pred * mask

    # squared Relative Error
    sq_rel = torch.abs(t_m - p_m) ** 2 / (t_m + 1e-10) # compute errors
    sq_rel_sum = torch.sum(sq_rel.reshape((b, c, -1)), dim=2) # [b, c]
    num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
    sqrel_err = sq_rel_sum / (num + 1e-10)
    valid_pics = torch.sum(num > 0)
    return torch.sum(sqrel_err), valid_pics

def get_log10_err(pred: torch.tensor,
                    target: torch.tensor,
                    mask: torch.tensor,
                    ):
    """
    Computes log10 error.
    Tasks preprocessed depths (no nans, infs and non-positive values).
    pred, target, and mask should be in the shape of [b, c, h, w]
    """

    assert len(pred.shape) == 4, len(target.shape) == 4
    b, c, h, w = pred.shape
    mask = mask.to(torch.float)
    t_m = target * mask
    p_m = pred * mask

    diff_log = (torch.log10(p_m+1e-10) - torch.log10(t_m+1e-10)) * mask
    log10_diff = torch.abs(diff_log)
    log10_sum = torch.sum(log10_diff.reshape((b, c, -1)), dim=2) # [b, c]
    num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
    log10_err = log10_sum / (num + 1e-10)
    valid_pics = torch.sum(num > 0)
    return torch.sum(log10_err), valid_pics

def get_rmse_err(pred: torch.tensor,
                    target: torch.tensor,
                    mask: torch.tensor,
                    ):
    """
    Computes rmse error.
    Tasks preprocessed depths (no nans, infs and non-positive values).
    pred, target, and mask should be in the shape of [b, c, h, w]
    """

    assert len(pred.shape) == 4, len(target.shape) == 4
    b, c, h, w = pred.shape
    mask = mask.to(torch.float)
    t_m = target * mask
    p_m = pred * mask

    square = (t_m - p_m) ** 2
    rmse_sum = torch.sum(square.reshape((b, c, -1)), dim=2) # [b, c]
    num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
    rmse = torch.sqrt(rmse_sum / (num + 1e-10))
    valid_pics = torch.sum(num > 0)
    return torch.sum(rmse), valid_pics

def get_rmse_log_err(pred: torch.tensor,
                    target: torch.tensor,
                    mask: torch.tensor,
                    ):
    """
    Computes log rmse error.
    Tasks preprocessed depths (no nans, infs and non-positive values).
    pred, target, and mask should be in the shape of [b, c, h, w]
    """

    assert len(pred.shape) == 4, len(target.shape) == 4
    b, c, h, w = pred.shape
    mask = mask.to(torch.float)
    t_m = target * mask
    p_m = pred * mask

    diff_log = (torch.log10(p_m+1e-10) - torch.log10(t_m+1e-10)) * mask
    square = diff_log ** 2
    rmse_log_sum = torch.sum(square.reshape((b, c, -1)), dim=2) # [b, c]
    num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
    rmse_log = torch.sqrt(rmse_log_sum / (num + 1e-10))
    valid_pics = torch.sum(num > 0)
    return torch.sum(rmse_log), valid_pics

def get_silog_err(pred: torch.tensor,
                    target: torch.tensor,
                    mask: torch.tensor,
                    ):
    """
    Computes log rmse error.
    Tasks preprocessed depths (no nans, infs and non-positive values).
    pred, target, and mask should be in the shape of [b, c, h, w]
    """

    assert len(pred.shape) == 4, len(target.shape) == 4
    b, c, h, w = pred.shape
    mask = mask.to(torch.float)
    t_m = target * mask
    p_m = pred * mask

    diff_log = (torch.log10(p_m+1e-10) - torch.log10(t_m+1e-10)) * mask
    diff_log_sum = torch.sum(diff_log.reshape((b, c, -1)), dim=2) # [b, c]
    diff_log_square = diff_log ** 2
    diff_log_square_sum = torch.sum(diff_log_square.reshape((b, c, -1)), dim=2) # [b, c]
    num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
    silog = torch.sqrt(diff_log_square_sum / (num + 1e-10) - (diff_log_sum / (num + 1e-10)) ** 2)
    valid_pics = torch.sum(num > 0)
    return torch.sum(silog), valid_pics

def get_ratio_err(pred: torch.tensor,
                    target: torch.tensor,
                    mask: torch.tensor,
                    ):
    """
    Computes the percentage of pixels for which the ratio of the two depth maps is less than a given threshold.
    Tasks preprocessed depths (no nans, infs and non-positive values).
    pred, target, and mask should be in the shape of [b, c, h, w]
    """
    assert len(pred.shape) == 4, len(target.shape) == 4
    b, c, h, w = pred.shape
    mask = mask.to(torch.float)
    t_m = target * mask
    p_m = pred

    gt_pred = t_m / (p_m + 1e-10)
    pred_gt = p_m / (t_m + 1e-10)
    gt_pred = gt_pred.reshape((b, c, -1))
    pred_gt = pred_gt.reshape((b, c, -1))
    gt_pred_gt = torch.cat((gt_pred, pred_gt), axis=1)
    ratio_max = torch.amax(gt_pred_gt, axis=1)

    delta_1_sum = torch.sum((ratio_max < 1.25), dim=1) # [b, ]
    delta_2_sum = torch.sum((ratio_max < 1.25 ** 2), dim=1) # [b, ]
    delta_3_sum = torch.sum((ratio_max < 1.25 ** 3), dim=1) # [b, ]
    num = torch.sum(mask.reshape((b, -1)), dim=1) # [b, ]

    delta_1 = delta_1_sum / (num + 1e-10)
    delta_2 = delta_2_sum / (num + 1e-10)
    delta_3 = delta_3_sum / (num + 1e-10)
    valid_pics = torch.sum(num > 0)    

    return torch.sum(delta_1), torch.sum(delta_2), torch.sum(delta_3), valid_pics


if __name__ == '__main__':
    cfg = ['abs_rel', 'delta1']
    dam = MetricAverageMeter(cfg)

    pred_depth = np.random.random([2, 480, 640])
    gt_depth = np.random.random([2, 480, 640]) - 0.5
    intrinsic = [[100, 100, 200, 200], [200, 200, 300, 300]]
    
    pred = torch.from_numpy(pred_depth).cuda()
    gt = torch.from_numpy(gt_depth).cuda()

    mask = gt > 0
    dam.update_metrics_gpu(pred, gt, mask, False)
    eval_error = dam.get_metrics()
    print(eval_error)