Spaces:
Running
on
T4
Running
on
T4
import os | |
import os.path as osp | |
import cv2 | |
import time | |
import sys | |
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
sys.path.append(CODE_SPACE) | |
import argparse | |
import mmcv | |
import torch | |
import torch.distributed as dist | |
import torch.multiprocessing as mp | |
try: | |
from mmcv.utils import Config, DictAction | |
except: | |
from mmengine import Config, DictAction | |
from datetime import timedelta | |
import random | |
import numpy as np | |
from mono.utils.logger import setup_logger | |
import glob | |
from mono.utils.comm import init_env | |
from mono.model.monodepth_model import get_configured_monodepth_model | |
from mono.utils.running import load_ckpt | |
from mono.utils.do_test import do_scalecano_test_with_custom_data | |
from mono.utils.mldb import load_data_info, reset_ckpt_path | |
from mono.utils.custom_data import load_from_annos, load_data | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Train a segmentor') | |
parser.add_argument('config', help='train config file path') | |
parser.add_argument('--show-dir', help='the dir to save logs and visualization results') | |
parser.add_argument('--load-from', help='the checkpoint file to load weights from') | |
parser.add_argument('--node_rank', type=int, default=0) | |
parser.add_argument('--nnodes', type=int, default=1, help='number of nodes') | |
parser.add_argument('--options', nargs='+', action=DictAction, help='custom options') | |
parser.add_argument('--launcher', choices=['None', 'pytorch', 'slurm', 'mpi', 'ror'], default='slurm', help='job launcher') | |
parser.add_argument('--test_data_path', default='None', type=str, help='the path of test data') | |
args = parser.parse_args() | |
return args | |
def main(args): | |
os.chdir(CODE_SPACE) | |
cfg = Config.fromfile(args.config) | |
if args.options is not None: | |
cfg.merge_from_dict(args.options) | |
# show_dir is determined in this priority: CLI > segment in file > filename | |
if args.show_dir is not None: | |
# update configs according to CLI args if args.show_dir is not None | |
cfg.show_dir = args.show_dir | |
else: | |
# use condig filename + timestamp as default show_dir if args.show_dir is None | |
cfg.show_dir = osp.join('./show_dirs', | |
osp.splitext(osp.basename(args.config))[0], | |
args.timestamp) | |
# ckpt path | |
if args.load_from is None: | |
raise RuntimeError('Please set model path!') | |
cfg.load_from = args.load_from | |
# load data info | |
data_info = {} | |
load_data_info('data_info', data_info=data_info) | |
cfg.mldb_info = data_info | |
# update check point info | |
reset_ckpt_path(cfg.model, data_info) | |
# create show dir | |
os.makedirs(osp.abspath(cfg.show_dir), exist_ok=True) | |
# init the logger before other steps | |
cfg.log_file = osp.join(cfg.show_dir, f'{args.timestamp}.log') | |
logger = setup_logger(cfg.log_file) | |
# log some basic info | |
logger.info(f'Config:\n{cfg.pretty_text}') | |
# init distributed env dirst, since logger depends on the dist info | |
if args.launcher == 'None': | |
cfg.distributed = False | |
else: | |
cfg.distributed = True | |
init_env(args.launcher, cfg) | |
logger.info(f'Distributed training: {cfg.distributed}') | |
# dump config | |
cfg.dump(osp.join(cfg.show_dir, osp.basename(args.config))) | |
test_data_path = args.test_data_path | |
if not os.path.isabs(test_data_path): | |
test_data_path = osp.join(CODE_SPACE, test_data_path) | |
if 'json' in test_data_path: | |
test_data = load_from_annos(test_data_path) | |
else: | |
test_data = load_data(args.test_data_path) | |
if not cfg.distributed: | |
main_worker(0, cfg, args.launcher, test_data) | |
else: | |
# distributed training | |
if args.launcher == 'ror': | |
local_rank = cfg.dist_params.local_rank | |
main_worker(local_rank, cfg, args.launcher, test_data) | |
else: | |
mp.spawn(main_worker, nprocs=cfg.dist_params.num_gpus_per_node, args=(cfg, args.launcher, test_data)) | |
def main_worker(local_rank: int, cfg: dict, launcher: str, test_data: list): | |
if cfg.distributed: | |
cfg.dist_params.global_rank = cfg.dist_params.node_rank * cfg.dist_params.num_gpus_per_node + local_rank | |
cfg.dist_params.local_rank = local_rank | |
if launcher == 'ror': | |
init_torch_process_group(use_hvd=False) | |
else: | |
torch.cuda.set_device(local_rank) | |
default_timeout = timedelta(minutes=30) | |
dist.init_process_group( | |
backend=cfg.dist_params.backend, | |
init_method=cfg.dist_params.dist_url, | |
world_size=cfg.dist_params.world_size, | |
rank=cfg.dist_params.global_rank, | |
timeout=default_timeout) | |
logger = setup_logger(cfg.log_file) | |
# build model | |
model = get_configured_monodepth_model(cfg, ) | |
# config distributed training | |
if cfg.distributed: | |
model = torch.nn.parallel.DistributedDataParallel(model.cuda(), | |
device_ids=[local_rank], | |
output_device=local_rank, | |
find_unused_parameters=True) | |
else: | |
model = torch.nn.DataParallel(model).cuda() | |
# load ckpt | |
model, _, _, _ = load_ckpt(cfg.load_from, model, strict_match=False) | |
model.eval() | |
do_scalecano_test_with_custom_data( | |
model, | |
cfg, | |
test_data, | |
logger, | |
cfg.distributed, | |
local_rank | |
) | |
if __name__ == '__main__': | |
args = parse_args() | |
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) | |
args.timestamp = timestamp | |
main(args) |