Metric3D / mono /tools /test_scale_cano.py
JUGGHM's picture
Upload 62 files
8a32844
import os
import os.path as osp
import cv2
import time
import sys
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(CODE_SPACE)
import argparse
import mmcv
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
try:
from mmcv.utils import Config, DictAction
except:
from mmengine import Config, DictAction
from datetime import timedelta
import random
import numpy as np
from mono.utils.logger import setup_logger
import glob
from mono.utils.comm import init_env
from mono.model.monodepth_model import get_configured_monodepth_model
from mono.utils.running import load_ckpt
from mono.utils.do_test import do_scalecano_test_with_custom_data
from mono.utils.mldb import load_data_info, reset_ckpt_path
from mono.utils.custom_data import load_from_annos, load_data
def parse_args():
parser = argparse.ArgumentParser(description='Train a segmentor')
parser.add_argument('config', help='train config file path')
parser.add_argument('--show-dir', help='the dir to save logs and visualization results')
parser.add_argument('--load-from', help='the checkpoint file to load weights from')
parser.add_argument('--node_rank', type=int, default=0)
parser.add_argument('--nnodes', type=int, default=1, help='number of nodes')
parser.add_argument('--options', nargs='+', action=DictAction, help='custom options')
parser.add_argument('--launcher', choices=['None', 'pytorch', 'slurm', 'mpi', 'ror'], default='slurm', help='job launcher')
parser.add_argument('--test_data_path', default='None', type=str, help='the path of test data')
args = parser.parse_args()
return args
def main(args):
os.chdir(CODE_SPACE)
cfg = Config.fromfile(args.config)
if args.options is not None:
cfg.merge_from_dict(args.options)
# show_dir is determined in this priority: CLI > segment in file > filename
if args.show_dir is not None:
# update configs according to CLI args if args.show_dir is not None
cfg.show_dir = args.show_dir
else:
# use condig filename + timestamp as default show_dir if args.show_dir is None
cfg.show_dir = osp.join('./show_dirs',
osp.splitext(osp.basename(args.config))[0],
args.timestamp)
# ckpt path
if args.load_from is None:
raise RuntimeError('Please set model path!')
cfg.load_from = args.load_from
# load data info
data_info = {}
load_data_info('data_info', data_info=data_info)
cfg.mldb_info = data_info
# update check point info
reset_ckpt_path(cfg.model, data_info)
# create show dir
os.makedirs(osp.abspath(cfg.show_dir), exist_ok=True)
# init the logger before other steps
cfg.log_file = osp.join(cfg.show_dir, f'{args.timestamp}.log')
logger = setup_logger(cfg.log_file)
# log some basic info
logger.info(f'Config:\n{cfg.pretty_text}')
# init distributed env dirst, since logger depends on the dist info
if args.launcher == 'None':
cfg.distributed = False
else:
cfg.distributed = True
init_env(args.launcher, cfg)
logger.info(f'Distributed training: {cfg.distributed}')
# dump config
cfg.dump(osp.join(cfg.show_dir, osp.basename(args.config)))
test_data_path = args.test_data_path
if not os.path.isabs(test_data_path):
test_data_path = osp.join(CODE_SPACE, test_data_path)
if 'json' in test_data_path:
test_data = load_from_annos(test_data_path)
else:
test_data = load_data(args.test_data_path)
if not cfg.distributed:
main_worker(0, cfg, args.launcher, test_data)
else:
# distributed training
if args.launcher == 'ror':
local_rank = cfg.dist_params.local_rank
main_worker(local_rank, cfg, args.launcher, test_data)
else:
mp.spawn(main_worker, nprocs=cfg.dist_params.num_gpus_per_node, args=(cfg, args.launcher, test_data))
def main_worker(local_rank: int, cfg: dict, launcher: str, test_data: list):
if cfg.distributed:
cfg.dist_params.global_rank = cfg.dist_params.node_rank * cfg.dist_params.num_gpus_per_node + local_rank
cfg.dist_params.local_rank = local_rank
if launcher == 'ror':
init_torch_process_group(use_hvd=False)
else:
torch.cuda.set_device(local_rank)
default_timeout = timedelta(minutes=30)
dist.init_process_group(
backend=cfg.dist_params.backend,
init_method=cfg.dist_params.dist_url,
world_size=cfg.dist_params.world_size,
rank=cfg.dist_params.global_rank,
timeout=default_timeout)
logger = setup_logger(cfg.log_file)
# build model
model = get_configured_monodepth_model(cfg, )
# config distributed training
if cfg.distributed:
model = torch.nn.parallel.DistributedDataParallel(model.cuda(),
device_ids=[local_rank],
output_device=local_rank,
find_unused_parameters=True)
else:
model = torch.nn.DataParallel(model).cuda()
# load ckpt
model, _, _, _ = load_ckpt(cfg.load_from, model, strict_match=False)
model.eval()
do_scalecano_test_with_custom_data(
model,
cfg,
test_data,
logger,
cfg.distributed,
local_rank
)
if __name__ == '__main__':
args = parse_args()
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
args.timestamp = timestamp
main(args)