import collections import cv2 import math import numpy as np import numbers import random import torch import matplotlib import matplotlib.cm """ Provides a set of Pytorch transforms that use OpenCV instead of PIL (Pytorch default) for image manipulation. """ class Compose(object): # Composes transforms: transforms.Compose([transforms.RandScale([0.5, 2.0]), transforms.ToTensor()]) def __init__(self, transforms): self.transforms = transforms def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None): for t in self.transforms: images, labels, intrinsics, cam_models, other_labels, transform_paras = t(images, labels, intrinsics, cam_models, other_labels, transform_paras) return images, labels, intrinsics, cam_models, other_labels, transform_paras class ToTensor(object): # Converts numpy.ndarray (H x W x C) to a torch.FloatTensor of shape (C x H x W). def __init__(self, **kwargs): return def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None): if not isinstance(images, list) or not isinstance(labels, list) or not isinstance(intrinsics, list): raise (RuntimeError("transform.ToTensor() only handle inputs/labels/intrinsics lists.")) if len(images) != len(intrinsics): raise (RuntimeError("Numbers of images and intrinsics are not matched.")) if not isinstance(images[0], np.ndarray) or not isinstance(labels[0], np.ndarray): raise (RuntimeError("transform.ToTensor() only handle np.ndarray for the input and label." "[eg: data readed by cv2.imread()].\n")) if not isinstance(intrinsics[0], list): raise (RuntimeError("transform.ToTensor() only handle list for the camera intrinsics")) if len(images[0].shape) > 3 or len(images[0].shape) < 2: raise (RuntimeError("transform.ToTensor() only handle image(np.ndarray) with 3 dims or 2 dims.\n")) if len(labels[0].shape) > 3 or len(labels[0].shape) < 2: raise (RuntimeError("transform.ToTensor() only handle label(np.ndarray) with 3 dims or 2 dims.\n")) if len(intrinsics[0]) >4 or len(intrinsics[0]) < 3: raise (RuntimeError("transform.ToTensor() only handle intrinsic(list) with 3 sizes or 4 sizes.\n")) for i, img in enumerate(images): if len(img.shape) == 2: img = np.expand_dims(img, axis=2) images[i] = torch.from_numpy(img.transpose((2, 0, 1))).float() for i, lab in enumerate(labels): if len(lab.shape) == 2: lab = np.expand_dims(lab, axis=0) labels[i] = torch.from_numpy(lab).float() for i, intrinsic in enumerate(intrinsics): if len(intrinsic) == 3: intrinsic = [intrinsic[0],] + intrinsic intrinsics[i] = torch.tensor(intrinsic, dtype=torch.float) if cam_models is not None: for i, cam_model in enumerate(cam_models): cam_models[i] = torch.from_numpy(cam_model.transpose((2, 0, 1))).float() if cam_model is not None else None if other_labels is not None: for i, lab in enumerate(other_labels): if len(lab.shape) == 2: lab = np.expand_dims(lab, axis=0) other_labels[i] = torch.from_numpy(lab).float() return images, labels, intrinsics, cam_models, other_labels, transform_paras class Normalize(object): # Normalize tensor with mean and standard deviation along channel: channel = (channel - mean) / std def __init__(self, mean, std=None, **kwargs): if std is None: assert len(mean) > 0 else: assert len(mean) == len(std) self.mean = torch.tensor(mean).float()[:, None, None] self.std = torch.tensor(std).float()[:, None, None] if std is not None \ else torch.tensor([1.0, 1.0, 1.0]).float()[:, None, None] def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None): # if self.std is None: # # for t, m in zip(image, self.mean): # # t.sub(m) # image = image - self.mean # if ref_images is not None: # for i, ref_i in enumerate(ref_images): # ref_images[i] = ref_i - self.mean # else: # # for t, m, s in zip(image, self.mean, self.std): # # t.sub(m).div(s) # image = (image - self.mean) / self.std # if ref_images is not None: # for i, ref_i in enumerate(ref_images): # ref_images[i] = (ref_i - self.mean) / self.std for i, img in enumerate(images): img = torch.div((img - self.mean), self.std) images[i] = img return images, labels, intrinsics, cam_models, other_labels, transform_paras class LableScaleCanonical(object): """ To solve the ambiguity observation for the mono branch, i.e. different focal length (object size) with the same depth, cameras are mapped to a canonical space. To mimic this, we set the focal length to a canonical one and scale the depth value. NOTE: resize the image based on the ratio can also solve Args: images: list of RGB images. labels: list of depth/disparity labels. other labels: other labels, such as instance segmentations, semantic segmentations... """ def __init__(self, **kwargs): self.canonical_focal = kwargs['focal_length'] def _get_scale_ratio(self, intrinsic): target_focal_x = intrinsic[0] label_scale_ratio = self.canonical_focal / target_focal_x pose_scale_ratio = 1.0 return label_scale_ratio, pose_scale_ratio def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None): assert len(images[0].shape) == 3 and len(labels[0].shape) == 2 assert labels[0].dtype == np.float32 label_scale_ratio = None pose_scale_ratio = None for i in range(len(intrinsics)): img_i = images[i] label_i = labels[i] if i < len(labels) else None intrinsic_i = intrinsics[i].copy() cam_model_i = cam_models[i] if cam_models is not None and i < len(cam_models) else None label_scale_ratio, pose_scale_ratio = self._get_scale_ratio(intrinsic_i) # adjust the focal length, map the current camera to the canonical space intrinsics[i] = [intrinsic_i[0] * label_scale_ratio, intrinsic_i[1] * label_scale_ratio, intrinsic_i[2], intrinsic_i[3]] # scale the label to the canonical space if label_i is not None: labels[i] = label_i * label_scale_ratio if cam_model_i is not None: # As the focal length is adjusted (canonical focal length), the camera model should be re-built ori_h, ori_w, _ = img_i.shape cam_models[i] = build_camera_model(ori_h, ori_w, intrinsics[i]) if transform_paras is not None: transform_paras.update(label_scale_factor=label_scale_ratio, focal_scale_factor=label_scale_ratio) return images, labels, intrinsics, cam_models, other_labels, transform_paras class ResizeKeepRatio(object): """ Resize and pad to a given size. Hold the aspect ratio. This resizing assumes that the camera model remains unchanged. Args: resize_size: predefined output size. """ def __init__(self, resize_size, padding=None, ignore_label=-1, **kwargs): if isinstance(resize_size, int): self.resize_h = resize_size self.resize_w = resize_size elif isinstance(resize_size, collections.Iterable) and len(resize_size) == 2 \ and isinstance(resize_size[0], int) and isinstance(resize_size[1], int) \ and resize_size[0] > 0 and resize_size[1] > 0: self.resize_h = resize_size[0] self.resize_w = resize_size[1] else: raise (RuntimeError("crop size error.\n")) if padding is None: self.padding = padding elif isinstance(padding, list): if all(isinstance(i, numbers.Number) for i in padding): self.padding = padding else: raise (RuntimeError("padding in Crop() should be a number list\n")) if len(padding) != 3: raise (RuntimeError("padding channel is not equal with 3\n")) else: raise (RuntimeError("padding in Crop() should be a number list\n")) if isinstance(ignore_label, int): self.ignore_label = ignore_label else: raise (RuntimeError("ignore_label should be an integer number\n")) # self.crop_size = kwargs['crop_size'] self.canonical_focal = kwargs['focal_length'] def main_data_transform(self, image, label, intrinsic, cam_model, resize_ratio, padding, to_scale_ratio): """ Resize data first and then do the padding. 'label' will be scaled. """ h, w, _ = image.shape reshape_h = int(resize_ratio * h) reshape_w = int(resize_ratio * w) pad_h, pad_w, pad_h_half, pad_w_half = padding # resize image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) # padding image = cv2.copyMakeBorder( image, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.padding) if label is not None: # label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) label = resize_depth_preserve(label, (reshape_h, reshape_w)) label = cv2.copyMakeBorder( label, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label) # scale the label label = label / to_scale_ratio # Resize, adjust principle point if intrinsic is not None: intrinsic[0] = intrinsic[0] * resize_ratio / to_scale_ratio intrinsic[1] = intrinsic[1] * resize_ratio / to_scale_ratio intrinsic[2] = intrinsic[2] * resize_ratio intrinsic[3] = intrinsic[3] * resize_ratio if cam_model is not None: #cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) cam_model = build_camera_model(reshape_h, reshape_w, intrinsic) cam_model = cv2.copyMakeBorder( cam_model, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label) # Pad, adjust the principle point if intrinsic is not None: intrinsic[2] = intrinsic[2] + pad_w_half intrinsic[3] = intrinsic[3] + pad_h_half return image, label, intrinsic, cam_model def get_label_scale_factor(self, image, intrinsic, resize_ratio): ori_h, ori_w, _ = image.shape # crop_h, crop_w = self.crop_size ori_focal = intrinsic[0] to_canonical_ratio = self.canonical_focal / ori_focal to_scale_ratio = resize_ratio / to_canonical_ratio return to_scale_ratio def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None): target_h, target_w, _ = images[0].shape resize_ratio_h = self.resize_h / target_h resize_ratio_w = self.resize_w / target_w resize_ratio = min(resize_ratio_h, resize_ratio_w) reshape_h = int(resize_ratio * target_h) reshape_w = int(resize_ratio * target_w) pad_h = max(self.resize_h - reshape_h, 0) pad_w = max(self.resize_w - reshape_w, 0) pad_h_half = int(pad_h / 2) pad_w_half = int(pad_w / 2) pad_info = [pad_h, pad_w, pad_h_half, pad_w_half] to_scale_ratio = self.get_label_scale_factor(images[0], intrinsics[0], resize_ratio) for i in range(len(images)): img = images[i] label = labels[i] if i < len(labels) else None intrinsic = intrinsics[i] if i < len(intrinsics) else None cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None img, label, intrinsic, cam_model = self.main_data_transform( img, label, intrinsic, cam_model, resize_ratio, pad_info, to_scale_ratio) images[i] = img if label is not None: labels[i] = label if intrinsic is not None: intrinsics[i] = intrinsic if cam_model is not None: cam_models[i] = cam_model if other_labels is not None: for i, other_lab in enumerate(other_labels): # resize other_lab = cv2.resize(other_lab, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) # pad other_labels[i] = cv2.copyMakeBorder( other_lab, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label) pad = [pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half] if transform_paras is not None: pad_old = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0] new_pad = [pad_old[0] + pad[0], pad_old[1] + pad[1], pad_old[2] + pad[2], pad_old[3] + pad[3]] transform_paras.update(dict(pad=new_pad)) if 'label_scale_factor' in transform_paras: transform_paras['label_scale_factor'] = transform_paras['label_scale_factor'] * 1.0 / to_scale_ratio else: transform_paras.update(label_scale_factor=1.0/to_scale_ratio) return images, labels, intrinsics, cam_models, other_labels, transform_paras class BGR2RGB(object): # Converts image from BGR order to RGB order, for model initialized from Pytorch def __init__(self, **kwargs): return def __call__(self, images, labels, intrinsics, cam_models=None,other_labels=None, transform_paras=None): for i, img in enumerate(images): images[i] = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return images, labels, intrinsics, cam_models, other_labels, transform_paras def resize_depth_preserve(depth, shape): """ Resizes depth map preserving all valid depth pixels Multiple downsampled points can be assigned to the same pixel. Parameters ---------- depth : np.array [h,w] Depth map shape : tuple (H,W) Output shape Returns ------- depth : np.array [H,W,1] Resized depth map """ # Store dimensions and reshapes to single column depth = np.squeeze(depth) h, w = depth.shape x = depth.reshape(-1) # Create coordinate grid uv = np.mgrid[:h, :w].transpose(1, 2, 0).reshape(-1, 2) # Filters valid points idx = x > 0 crd, val = uv[idx], x[idx] # Downsamples coordinates crd[:, 0] = (crd[:, 0] * (shape[0] / h) + 0.5).astype(np.int32) crd[:, 1] = (crd[:, 1] * (shape[1] / w) + 0.5).astype(np.int32) # Filters points inside image idx = (crd[:, 0] < shape[0]) & (crd[:, 1] < shape[1]) crd, val = crd[idx], val[idx] # Creates downsampled depth image and assigns points depth = np.zeros(shape) depth[crd[:, 0], crd[:, 1]] = val # Return resized depth map return depth def build_camera_model(H : int, W : int, intrinsics : list) -> np.array: """ Encode the camera intrinsic parameters (focal length and principle point) to a 4-channel map. """ fx, fy, u0, v0 = intrinsics f = (fx + fy) / 2.0 # principle point location x_row = np.arange(0, W).astype(np.float32) x_row_center_norm = (x_row - u0) / W x_center = np.tile(x_row_center_norm, (H, 1)) # [H, W] y_col = np.arange(0, H).astype(np.float32) y_col_center_norm = (y_col - v0) / H y_center = np.tile(y_col_center_norm, (W, 1)).T # FoV fov_x = np.arctan(x_center / (f / W)) fov_y = np.arctan(y_center/ (f / H)) cam_model = np.stack([x_center, y_center, fov_x, fov_y], axis=2) return cam_model def gray_to_colormap(img, cmap='rainbow'): """ Transfer gray map to matplotlib colormap """ assert img.ndim == 2 img[img<0] = 0 mask_invalid = img < 1e-10 #img = img / (img.max() + 1e-8) img_ = img.flatten() max_value = np.percentile(img_, q=98) img = img / (max_value + 1e-8) norm = matplotlib.colors.Normalize(vmin=0, vmax=1.1) cmap_m = matplotlib.cm.get_cmap(cmap) map = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap_m) colormap = (map.to_rgba(img)[:, :, :3] * 255).astype(np.uint8) colormap[mask_invalid] = 0 return colormap