Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,18 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import seaborn as sns
|
5 |
import numpy as np
|
|
|
|
|
6 |
from io import StringIO
|
7 |
import openpyxl
|
8 |
from st_aggrid import AgGrid, GridUpdateMode
|
9 |
from st_aggrid.grid_options_builder import GridOptionsBuilder
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def load_data(file):
|
12 |
file_extension = file.name.split('.')[-1].lower()
|
@@ -15,17 +21,17 @@ def load_data(file):
|
|
15 |
elif file_extension in ['xls', 'xlsx']:
|
16 |
data = pd.read_excel(file)
|
17 |
else:
|
18 |
-
st.error("
|
19 |
return None
|
20 |
return data
|
21 |
|
22 |
def manual_data_entry():
|
23 |
-
st.subheader("
|
24 |
-
col_names = st.text_input("
|
25 |
col_names = [name.strip() for name in col_names if name.strip()]
|
26 |
|
27 |
if col_names:
|
28 |
-
num_rows = st.number_input("
|
29 |
data = pd.DataFrame(columns=col_names, index=range(num_rows))
|
30 |
|
31 |
gd = GridOptionsBuilder.from_dataframe(data)
|
@@ -40,93 +46,91 @@ def manual_data_entry():
|
|
40 |
return None
|
41 |
|
42 |
def preprocess_data(data):
|
43 |
-
st.subheader("
|
44 |
|
45 |
-
#
|
46 |
if data.isnull().sum().sum() > 0:
|
47 |
-
st.write("
|
48 |
for column in data.columns:
|
49 |
if data[column].isnull().sum() > 0:
|
50 |
-
method = st.selectbox(f"
|
51 |
-
["
|
52 |
-
if method == "
|
53 |
data = data.dropna(subset=[column])
|
54 |
-
elif method == "
|
55 |
data[column].fillna(data[column].mean(), inplace=True)
|
56 |
-
elif method == "
|
57 |
data[column].fillna(data[column].median(), inplace=True)
|
58 |
-
elif method == "
|
59 |
data[column].fillna(data[column].mode()[0], inplace=True)
|
60 |
|
61 |
-
#
|
62 |
for column in data.columns:
|
63 |
if data[column].dtype == 'object':
|
64 |
try:
|
65 |
data[column] = pd.to_numeric(data[column])
|
66 |
-
st.write(f"
|
67 |
except ValueError:
|
68 |
-
st.write(f"
|
69 |
|
70 |
return data
|
71 |
|
72 |
def perform_analysis(data):
|
73 |
-
st.header("
|
74 |
|
75 |
-
#
|
76 |
-
st.write("
|
77 |
st.write(data.describe())
|
78 |
|
79 |
-
#
|
80 |
-
st.write("
|
81 |
numeric_data = data.select_dtypes(include=['float64', 'int64'])
|
82 |
if not numeric_data.empty:
|
83 |
-
fig
|
84 |
-
|
85 |
-
st.
|
86 |
else:
|
87 |
-
st.write("
|
88 |
|
89 |
-
#
|
90 |
-
st.write("
|
91 |
if not numeric_data.empty:
|
92 |
-
fig =
|
93 |
-
|
|
|
94 |
else:
|
95 |
-
st.write("
|
96 |
|
97 |
-
#
|
98 |
-
st.write("
|
99 |
for column in numeric_data.columns:
|
100 |
-
fig
|
101 |
-
|
102 |
-
st.
|
103 |
|
104 |
-
#
|
105 |
-
st.write("
|
106 |
for column in numeric_data.columns:
|
107 |
-
fig
|
108 |
-
|
109 |
-
st.
|
110 |
|
111 |
-
#
|
112 |
categorical_columns = data.select_dtypes(include=['object']).columns
|
113 |
if not categorical_columns.empty:
|
114 |
-
st.write("
|
115 |
for column in categorical_columns:
|
116 |
-
fig
|
117 |
-
|
118 |
-
|
119 |
-
plt.xlabel(column)
|
120 |
-
plt.ylabel("Count")
|
121 |
-
st.pyplot(fig)
|
122 |
|
123 |
def main():
|
124 |
-
st.title("
|
125 |
|
126 |
-
data_input_method = st.radio("
|
127 |
|
128 |
-
if data_input_method == "
|
129 |
-
uploaded_file = st.file_uploader("
|
130 |
if uploaded_file is not None:
|
131 |
data = load_data(uploaded_file)
|
132 |
else:
|
@@ -135,7 +139,7 @@ def main():
|
|
135 |
data = manual_data_entry()
|
136 |
|
137 |
if data is not None:
|
138 |
-
st.write("
|
139 |
st.write(data.head())
|
140 |
|
141 |
data = preprocess_data(data)
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
|
|
3 |
import numpy as np
|
4 |
+
import plotly.express as px
|
5 |
+
import plotly.graph_objects as go
|
6 |
from io import StringIO
|
7 |
import openpyxl
|
8 |
from st_aggrid import AgGrid, GridUpdateMode
|
9 |
from st_aggrid.grid_options_builder import GridOptionsBuilder
|
10 |
+
import matplotlib.font_manager as fm
|
11 |
+
|
12 |
+
# νκΈ ν°νΈ μ€μ
|
13 |
+
font_path = "./Pretendard-Bold.ttf" # μ€μ ν°νΈ νμΌ κ²½λ‘λ‘ λ³κ²½ν΄μ£ΌμΈμ
|
14 |
+
fm.fontManager.addfont(font_path)
|
15 |
+
plt.rc('font', family='Pretendard-Bold') # 'your_font_name'μ μ€μ ν°νΈ μ΄λ¦μΌλ‘ λ³κ²½ν΄μ£ΌμΈμ
|
16 |
|
17 |
def load_data(file):
|
18 |
file_extension = file.name.split('.')[-1].lower()
|
|
|
21 |
elif file_extension in ['xls', 'xlsx']:
|
22 |
data = pd.read_excel(file)
|
23 |
else:
|
24 |
+
st.error("μ§μλμ§ μλ νμΌ νμμ
λλ€. CSV, XLS, λλ XLSX νμΌμ μ
λ‘λν΄μ£ΌμΈμ.")
|
25 |
return None
|
26 |
return data
|
27 |
|
28 |
def manual_data_entry():
|
29 |
+
st.subheader("μλ λ°μ΄ν° μ
λ ₯")
|
30 |
+
col_names = st.text_input("μ΄ μ΄λ¦μ μΌνλ‘ κ΅¬λΆνμ¬ μ
λ ₯νμΈμ:").split(',')
|
31 |
col_names = [name.strip() for name in col_names if name.strip()]
|
32 |
|
33 |
if col_names:
|
34 |
+
num_rows = st.number_input("νμ μλ₯Ό μ
λ ₯νμΈμ:", min_value=1, value=5)
|
35 |
data = pd.DataFrame(columns=col_names, index=range(num_rows))
|
36 |
|
37 |
gd = GridOptionsBuilder.from_dataframe(data)
|
|
|
46 |
return None
|
47 |
|
48 |
def preprocess_data(data):
|
49 |
+
st.subheader("λ°μ΄ν° μ μ²λ¦¬")
|
50 |
|
51 |
+
# κ²°μΈ‘μΉ μ²λ¦¬
|
52 |
if data.isnull().sum().sum() > 0:
|
53 |
+
st.write("κ²°μΈ‘μΉ μ²λ¦¬:")
|
54 |
for column in data.columns:
|
55 |
if data[column].isnull().sum() > 0:
|
56 |
+
method = st.selectbox(f"{column} μ΄μ μ²λ¦¬ λ°©λ² μ ν:",
|
57 |
+
["μ κ±°", "νκ· μΌλ‘ λ체", "μ€μκ°μΌλ‘ λ체", "μ΅λΉκ°μΌλ‘ λ체"])
|
58 |
+
if method == "μ κ±°":
|
59 |
data = data.dropna(subset=[column])
|
60 |
+
elif method == "νκ· μΌλ‘ λ체":
|
61 |
data[column].fillna(data[column].mean(), inplace=True)
|
62 |
+
elif method == "μ€μκ°μΌλ‘ λ체":
|
63 |
data[column].fillna(data[column].median(), inplace=True)
|
64 |
+
elif method == "μ΅λΉκ°μΌλ‘ λ체":
|
65 |
data[column].fillna(data[column].mode()[0], inplace=True)
|
66 |
|
67 |
+
# λ°μ΄ν° νμ
λ³ν
|
68 |
for column in data.columns:
|
69 |
if data[column].dtype == 'object':
|
70 |
try:
|
71 |
data[column] = pd.to_numeric(data[column])
|
72 |
+
st.write(f"{column} μ΄μ μ«μνμΌλ‘ λ³ννμ΅λλ€.")
|
73 |
except ValueError:
|
74 |
+
st.write(f"{column} μ΄μ λ²μ£ΌνμΌλ‘ μ μ§λ©λλ€.")
|
75 |
|
76 |
return data
|
77 |
|
78 |
def perform_analysis(data):
|
79 |
+
st.header("νμμ λ°μ΄ν° λΆμ")
|
80 |
|
81 |
+
# μμ½ ν΅κ³
|
82 |
+
st.write("μμ½ ν΅κ³:")
|
83 |
st.write(data.describe())
|
84 |
|
85 |
+
# μκ΄κ΄κ³ ννΈλ§΅
|
86 |
+
st.write("μκ΄κ΄κ³ ννΈλ§΅:")
|
87 |
numeric_data = data.select_dtypes(include=['float64', 'int64'])
|
88 |
if not numeric_data.empty:
|
89 |
+
fig = px.imshow(numeric_data.corr(), color_continuous_scale='RdBu_r', zmin=-1, zmax=1)
|
90 |
+
fig.update_layout(title='μκ΄κ΄κ³ ννΈλ§΅')
|
91 |
+
st.plotly_chart(fig)
|
92 |
else:
|
93 |
+
st.write("μκ΄κ΄κ³ ννΈλ§΅μ 그릴 μ μλ μ«μν μ΄μ΄ μμ΅λλ€.")
|
94 |
|
95 |
+
# μ°μ λ νλ ¬
|
96 |
+
st.write("μ°μ λ νλ ¬:")
|
97 |
if not numeric_data.empty:
|
98 |
+
fig = px.scatter_matrix(numeric_data)
|
99 |
+
fig.update_layout(title='μ°μ λ νλ ¬')
|
100 |
+
st.plotly_chart(fig)
|
101 |
else:
|
102 |
+
st.write("μ°μ λ νλ ¬μ 그릴 μ μλ μ«μν μ΄μ΄ μμ΅λλ€.")
|
103 |
|
104 |
+
# νμ€ν κ·Έλ¨
|
105 |
+
st.write("νμ€ν κ·Έλ¨:")
|
106 |
for column in numeric_data.columns:
|
107 |
+
fig = px.histogram(data, x=column, marginal='box')
|
108 |
+
fig.update_layout(title=f'{column} νμ€ν κ·Έλ¨')
|
109 |
+
st.plotly_chart(fig)
|
110 |
|
111 |
+
# λ°μ€νλ‘―
|
112 |
+
st.write("λ°μ€νλ‘―:")
|
113 |
for column in numeric_data.columns:
|
114 |
+
fig = px.box(data, y=column)
|
115 |
+
fig.update_layout(title=f'{column} λ°μ€νλ‘―')
|
116 |
+
st.plotly_chart(fig)
|
117 |
|
118 |
+
# λ²μ£Όν λ³μ λ§λ κ·Έλν
|
119 |
categorical_columns = data.select_dtypes(include=['object']).columns
|
120 |
if not categorical_columns.empty:
|
121 |
+
st.write("λ²μ£Όν λ³μ λ§λ κ·Έλν:")
|
122 |
for column in categorical_columns:
|
123 |
+
fig = px.bar(data[column].value_counts().reset_index(), x='index', y=column)
|
124 |
+
fig.update_layout(title=f'{column} λΆν¬', xaxis_title=column, yaxis_title='κ°μ')
|
125 |
+
st.plotly_chart(fig)
|
|
|
|
|
|
|
126 |
|
127 |
def main():
|
128 |
+
st.title("μΈν°λν°λΈ EDA ν΄ν·")
|
129 |
|
130 |
+
data_input_method = st.radio("λ°μ΄ν° μ
λ ₯ λ°©λ² μ ν:", ("νμΌ μ
λ‘λ", "μλ μ
λ ₯"))
|
131 |
|
132 |
+
if data_input_method == "νμΌ μ
λ‘λ":
|
133 |
+
uploaded_file = st.file_uploader("CSV, XLS, λλ XLSX νμΌμ μ ννμΈμ", type=["csv", "xls", "xlsx"])
|
134 |
if uploaded_file is not None:
|
135 |
data = load_data(uploaded_file)
|
136 |
else:
|
|
|
139 |
data = manual_data_entry()
|
140 |
|
141 |
if data is not None:
|
142 |
+
st.write("λ°μ΄ν° 미리보기:")
|
143 |
st.write(data.head())
|
144 |
|
145 |
data = preprocess_data(data)
|