Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -178,39 +178,70 @@ def plot_correlation_heatmap(data):
|
|
178 |
st.warning("μκ΄κ΄κ³ ννΈλ§΅μ 그릴 μ μλ μ«μν μ΄μ΄ μμ΅λλ€.")
|
179 |
|
180 |
def plot_scatter_with_regression(data, x_var, y_var):
|
181 |
-
|
182 |
-
|
183 |
-
# νκ·μ μΆκ°
|
184 |
x = data[x_var]
|
185 |
y = data[y_var]
|
186 |
slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
|
187 |
-
line_x = np.array([x.min(), x.max()])
|
188 |
-
line_y = slope * line_x + intercept
|
189 |
-
fig.add_trace(go.Scatter(x=line_x, y=line_y, mode='lines', name='νκ·μ '))
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
r_squared = r_value ** 2
|
192 |
fig.update_layout(
|
193 |
-
title=f'{x_var}μ {y_var}μ κ΄κ³ (R-squared: {r_squared:.
|
194 |
xaxis_title=x_var,
|
195 |
yaxis_title=y_var,
|
|
|
196 |
annotations=[
|
197 |
dict(
|
198 |
-
x=0.
|
199 |
-
y=
|
200 |
xref='paper',
|
201 |
yref='paper',
|
202 |
-
text=f'
|
203 |
showarrow=False,
|
|
|
204 |
)
|
205 |
]
|
206 |
)
|
|
|
207 |
st.plotly_chart(fig)
|
208 |
|
209 |
# μΆκ° ν΅κ³ μ 보
|
210 |
st.write(f"μκ΄κ³μ: {r_value:.4f}")
|
211 |
st.write(f"p-value: {p_value:.4f}")
|
212 |
st.write(f"νμ€ μ€μ°¨: {std_err:.4f}")
|
213 |
-
|
214 |
def perform_analysis():
|
215 |
if st.session_state.filtered_data is None:
|
216 |
st.session_state.filtered_data = st.session_state.processed_data.copy()
|
|
|
178 |
st.warning("μκ΄κ΄κ³ ννΈλ§΅μ 그릴 μ μλ μ«μν μ΄μ΄ μμ΅λλ€.")
|
179 |
|
180 |
def plot_scatter_with_regression(data, x_var, y_var):
|
181 |
+
# νκ· λΆμ μν
|
|
|
|
|
182 |
x = data[x_var]
|
183 |
y = data[y_var]
|
184 |
slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
|
|
|
|
|
|
|
185 |
|
186 |
+
# μμΈ‘κ° κ³μ°
|
187 |
+
y_pred = slope * x + intercept
|
188 |
+
|
189 |
+
# μμ°¨ κ³μ°
|
190 |
+
residuals = y - y_pred
|
191 |
+
|
192 |
+
# κ·Έλν μμ±
|
193 |
+
fig = go.Figure()
|
194 |
+
|
195 |
+
# μ°μ λ μΆκ°
|
196 |
+
fig.add_trace(go.Scatter(
|
197 |
+
x=x,
|
198 |
+
y=y,
|
199 |
+
mode='markers',
|
200 |
+
name='Data Points',
|
201 |
+
marker=dict(color='blue', size=8),
|
202 |
+
error_y=dict(
|
203 |
+
type='data',
|
204 |
+
array=abs(residuals),
|
205 |
+
visible=True
|
206 |
+
)
|
207 |
+
))
|
208 |
+
|
209 |
+
# νκ·μ μΆκ°
|
210 |
+
fig.add_trace(go.Scatter(
|
211 |
+
x=x,
|
212 |
+
y=y_pred,
|
213 |
+
mode='lines',
|
214 |
+
name='Regression Line',
|
215 |
+
line=dict(color='red', width=2)
|
216 |
+
))
|
217 |
+
|
218 |
+
# λ μ΄μμ μ€μ
|
219 |
r_squared = r_value ** 2
|
220 |
fig.update_layout(
|
221 |
+
title=f'{x_var}μ {y_var}μ κ΄κ³ (R-squared: {r_squared:.3f})',
|
222 |
xaxis_title=x_var,
|
223 |
yaxis_title=y_var,
|
224 |
+
showlegend=True,
|
225 |
annotations=[
|
226 |
dict(
|
227 |
+
x=0.05,
|
228 |
+
y=0.95,
|
229 |
xref='paper',
|
230 |
yref='paper',
|
231 |
+
text=f'y = {slope:.2f}x + {intercept:.2f}\nRΒ² = {r_squared:.3f}',
|
232 |
showarrow=False,
|
233 |
+
bgcolor='rgba(255, 255, 255, 0.8)'
|
234 |
)
|
235 |
]
|
236 |
)
|
237 |
+
|
238 |
st.plotly_chart(fig)
|
239 |
|
240 |
# μΆκ° ν΅κ³ μ 보
|
241 |
st.write(f"μκ΄κ³μ: {r_value:.4f}")
|
242 |
st.write(f"p-value: {p_value:.4f}")
|
243 |
st.write(f"νμ€ μ€μ°¨: {std_err:.4f}")
|
244 |
+
|
245 |
def perform_analysis():
|
246 |
if st.session_state.filtered_data is None:
|
247 |
st.session_state.filtered_data = st.session_state.processed_data.copy()
|