Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,73 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import matplotlib.pyplot as plt
|
4 |
import seaborn as sns
|
|
|
5 |
from io import StringIO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def main():
|
8 |
st.title("PPDAC Data Analysis Toolkit")
|
@@ -17,39 +83,29 @@ def main():
|
|
17 |
|
18 |
# Data
|
19 |
st.header("3. Data")
|
20 |
-
|
21 |
|
22 |
-
if
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
st.write(data.head())
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
# Summary statistics
|
33 |
-
st.write("Summary Statistics:")
|
34 |
-
st.write(data.describe())
|
35 |
-
|
36 |
-
# Correlation heatmap
|
37 |
-
st.write("Correlation Heatmap:")
|
38 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
39 |
-
sns.heatmap(data.corr(), annot=True, cmap='coolwarm', ax=ax)
|
40 |
-
st.pyplot(fig)
|
41 |
-
|
42 |
-
# Pairplot
|
43 |
-
st.write("Pairplot:")
|
44 |
-
fig = sns.pairplot(data)
|
45 |
-
st.pyplot(fig)
|
46 |
|
47 |
-
|
48 |
-
st.write("Histograms:")
|
49 |
-
for column in data.select_dtypes(include=['float64', 'int64']).columns:
|
50 |
-
fig, ax = plt.subplots()
|
51 |
-
sns.histplot(data[column], kde=True, ax=ax)
|
52 |
-
st.pyplot(fig)
|
53 |
|
54 |
# Conclusion
|
55 |
st.header("5. Conclusion")
|
|
|
2 |
import pandas as pd
|
3 |
import matplotlib.pyplot as plt
|
4 |
import seaborn as sns
|
5 |
+
import numpy as np
|
6 |
from io import StringIO
|
7 |
+
import openpyxl
|
8 |
+
|
9 |
+
def load_data(file):
|
10 |
+
file_extension = file.name.split('.')[-1].lower()
|
11 |
+
if file_extension == 'csv':
|
12 |
+
data = pd.read_csv(file)
|
13 |
+
elif file_extension in ['xls', 'xlsx']:
|
14 |
+
data = pd.read_excel(file)
|
15 |
+
else:
|
16 |
+
st.error("Unsupported file format. Please upload a CSV, XLS, or XLSX file.")
|
17 |
+
return None
|
18 |
+
return data
|
19 |
+
|
20 |
+
def manual_data_entry():
|
21 |
+
st.subheader("Manual Data Entry")
|
22 |
+
col_names = st.text_input("Enter column names separated by commas:").split(',')
|
23 |
+
col_names = [name.strip() for name in col_names if name.strip()]
|
24 |
+
|
25 |
+
if col_names:
|
26 |
+
num_rows = st.number_input("Enter number of rows:", min_value=1, value=5)
|
27 |
+
data = []
|
28 |
+
for i in range(num_rows):
|
29 |
+
row = []
|
30 |
+
for col in col_names:
|
31 |
+
value = st.text_input(f"Enter value for {col} (Row {i+1}):")
|
32 |
+
row.append(value)
|
33 |
+
data.append(row)
|
34 |
+
|
35 |
+
return pd.DataFrame(data, columns=col_names)
|
36 |
+
return None
|
37 |
+
|
38 |
+
def perform_analysis(data):
|
39 |
+
st.header("4. Analysis")
|
40 |
+
|
41 |
+
# EDA
|
42 |
+
st.subheader("Exploratory Data Analysis")
|
43 |
+
|
44 |
+
# Summary statistics
|
45 |
+
st.write("Summary Statistics:")
|
46 |
+
st.write(data.describe())
|
47 |
+
|
48 |
+
# Correlation heatmap
|
49 |
+
st.write("Correlation Heatmap:")
|
50 |
+
numeric_data = data.select_dtypes(include=['float64', 'int64'])
|
51 |
+
if not numeric_data.empty:
|
52 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
53 |
+
sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm', ax=ax)
|
54 |
+
st.pyplot(fig)
|
55 |
+
else:
|
56 |
+
st.write("No numeric columns available for correlation heatmap.")
|
57 |
+
|
58 |
+
# Pairplot
|
59 |
+
st.write("Pairplot:")
|
60 |
+
if not numeric_data.empty:
|
61 |
+
fig = sns.pairplot(numeric_data)
|
62 |
+
st.pyplot(fig)
|
63 |
+
else:
|
64 |
+
st.write("No numeric columns available for pairplot.")
|
65 |
+
|
66 |
+
# Histogram
|
67 |
+
st.write("Histograms:")
|
68 |
+
for column in numeric_data.columns:
|
69 |
+
fig, ax = plt.subplots()
|
70 |
+
sns.histplot(data[column], kde=True, ax=ax)
|
71 |
+
st.pyplot(fig)
|
72 |
|
73 |
def main():
|
74 |
st.title("PPDAC Data Analysis Toolkit")
|
|
|
83 |
|
84 |
# Data
|
85 |
st.header("3. Data")
|
86 |
+
data_input_method = st.radio("Choose data input method:", ("Upload File", "Manual Entry"))
|
87 |
|
88 |
+
if data_input_method == "Upload File":
|
89 |
+
uploaded_file = st.file_uploader("Choose a CSV, XLS, or XLSX file", type=["csv", "xls", "xlsx"])
|
90 |
+
if uploaded_file is not None:
|
91 |
+
data = load_data(uploaded_file)
|
92 |
+
else:
|
93 |
+
data = None
|
94 |
+
else:
|
95 |
+
data = manual_data_entry()
|
96 |
+
|
97 |
+
if data is not None:
|
98 |
+
st.write("Data Preview:")
|
99 |
st.write(data.head())
|
100 |
|
101 |
+
# Convert columns to numeric where possible
|
102 |
+
for col in data.columns:
|
103 |
+
try:
|
104 |
+
data[col] = pd.to_numeric(data[col])
|
105 |
+
except ValueError:
|
106 |
+
pass # Keep as non-numeric if conversion fails
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
perform_analysis(data)
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
# Conclusion
|
111 |
st.header("5. Conclusion")
|