Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import torch | |
import warnings | |
import numpy as np | |
import gradio as gr | |
import paddlehub as hub | |
from PIL import Image | |
from methods.img2pixl import pixL | |
from examples.pixelArt.combine import combine | |
from methods.media import Media | |
warnings.filterwarnings("ignore") | |
U2Net = hub.Module(name='U2Net') | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", device=device, size=512) | |
model = torch.hub.load("bryandlee/animegan2-pytorch", "generator", device=device).eval() | |
def initilize(media,pixel_size,checkbox1): | |
#Author: Alican Akca | |
if media.name.endswith('.gif'): | |
return Media().split(media.name,pixel_size, 'gif') | |
elif media.name.endswith('.mp4'): | |
return None #Media().split(media.name,pixel_size, "video") | |
else: | |
media = Image.open(media.name).convert("RGB") | |
media = cv2.cvtColor(np.asarray(face2paint(model, media)), cv2.COLOR_BGR2RGB) | |
if checkbox1: | |
result = U2Net.Segmentation(images=[media], | |
paths=None, | |
batch_size=1, | |
input_size=320, | |
output_dir='output', | |
visualization=True) | |
result = combine().combiner(images = pixL().toThePixL([result[0]['front'][:,:,::-1], result[0]['mask']], | |
pixel_size), | |
background_image = media) | |
else: | |
result = pixL().toThePixL([media], pixel_size) | |
result = Image.fromarray(result) | |
result.save('cache.png') | |
return [None, result, 'cache.png'] | |
inputs = [gr.File(label="Media"), | |
gr.Slider(4, 100, value=12, step = 2, label="Pixel Size"), | |
gr.Checkbox(label="Object-Oriented Inference", value=False)] | |
outputs = [gr.Video(label="Pixed Media"), | |
gr.Image(label="Pixed Media"), | |
gr.File(label="Download")] | |
title = "ํฝ์ธ๋ผ: ์ฌ์ง,๊ทธ๋ฆผ์ ํฝ์ ์ํธ๋ก ๋ง๋ค์ด๋ณด์ธ์" | |
description = """ํ์ฌ๋ ์ฌ์ง,๊ทธ๋ฆผ๋ง ๊ฐ๋ฅํฉ๋๋ค. ๋์์์ ์ถํ ์ง์""" | |
gr.Interface(fn = initilize, | |
inputs = inputs, | |
outputs = outputs, | |
title=title, | |
description=description).launch() |