Spaces:
Build error
Build error
Duplicate from Alican/pixera
Browse filesCo-authored-by: Akca <[email protected]>
- .gitattributes +33 -0
- README.md +13 -0
- app.py +62 -0
- cache.gif +0 -0
- cache.mp4 +0 -0
- examples/GANexample1.ipynb +0 -0
- examples/pixelArt/__pycache__/combine.cpython-38.pyc +0 -0
- examples/pixelArt/combine.py +29 -0
- img/example_1.jpg +0 -0
- img/logo.jpg +0 -0
- img/method_1.png +0 -0
- methods/__pycache__/img2pixl.cpython-38.pyc +0 -0
- methods/__pycache__/media.cpython-38.pyc +0 -0
- methods/img2pixl.py +71 -0
- methods/media.py +35 -0
- output/result_0.png +0 -0
- output/result_mask_0.png +0 -0
- requirements.txt +10 -0
- src/GAN.py +202 -0
.gitattributes
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
23 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
methods/white_box_cartoonizer/saved_models/model-33999.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
33 |
+
examples/pixelArt/white_box_cartoonizer/saved_models/model-33999.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Pixera
|
3 |
+
emoji: 💻
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.1.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: Alican/pixera
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import warnings
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
import paddlehub as hub
|
8 |
+
from PIL import Image
|
9 |
+
from methods.img2pixl import pixL
|
10 |
+
from examples.pixelArt.combine import combine
|
11 |
+
from methods.media import Media
|
12 |
+
|
13 |
+
warnings.filterwarnings("ignore")
|
14 |
+
|
15 |
+
U2Net = hub.Module(name='U2Net')
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", device=device, size=512)
|
18 |
+
model = torch.hub.load("bryandlee/animegan2-pytorch", "generator", device=device).eval()
|
19 |
+
|
20 |
+
|
21 |
+
def initilize(media,pixel_size,checkbox1):
|
22 |
+
#Author: Alican Akca
|
23 |
+
if media.name.endswith('.gif'):
|
24 |
+
return Media().split(media.name,pixel_size, 'gif')
|
25 |
+
elif media.name.endswith('.mp4'):
|
26 |
+
return None #Media().split(media.name,pixel_size, "video")
|
27 |
+
else:
|
28 |
+
media = Image.open(media.name).convert("RGB")
|
29 |
+
media = cv2.cvtColor(np.asarray(face2paint(model, media)), cv2.COLOR_BGR2RGB)
|
30 |
+
if checkbox1:
|
31 |
+
result = U2Net.Segmentation(images=[media],
|
32 |
+
paths=None,
|
33 |
+
batch_size=1,
|
34 |
+
input_size=320,
|
35 |
+
output_dir='output',
|
36 |
+
visualization=True)
|
37 |
+
result = combine().combiner(images = pixL().toThePixL([result[0]['front'][:,:,::-1], result[0]['mask']],
|
38 |
+
pixel_size),
|
39 |
+
background_image = media)
|
40 |
+
else:
|
41 |
+
result = pixL().toThePixL([media], pixel_size)
|
42 |
+
result = Image.fromarray(result)
|
43 |
+
result.save('cache.png')
|
44 |
+
return [None, result, 'cache.png']
|
45 |
+
|
46 |
+
inputs = [gr.File(label="Media"),
|
47 |
+
gr.Slider(4, 100, value=12, step = 2, label="Pixel Size"),
|
48 |
+
gr.Checkbox(label="Object-Oriented Inference", value=False)]
|
49 |
+
|
50 |
+
outputs = [gr.Video(label="Pixed Media"),
|
51 |
+
gr.Image(label="Pixed Media"),
|
52 |
+
gr.File(label="Download")]
|
53 |
+
|
54 |
+
title = "Pixera: Create your own Pixel Art"
|
55 |
+
description = """Object-Oriented Inference is currently only available for images. Also, Video Processing has currently suspended."""
|
56 |
+
|
57 |
+
gr.Interface(fn = initilize,
|
58 |
+
inputs = inputs,
|
59 |
+
outputs = outputs,
|
60 |
+
title=title,
|
61 |
+
description=description).launch()
|
62 |
+
|
cache.gif
ADDED
![]() |
cache.mp4
ADDED
Binary file (6.99 kB). View file
|
|
examples/GANexample1.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
examples/pixelArt/__pycache__/combine.cpython-38.pyc
ADDED
Binary file (1.27 kB). View file
|
|
examples/pixelArt/combine.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
class combine:
|
5 |
+
#Author: Alican Akca
|
6 |
+
def __init__(self, size = (400,300),images = [],background_image = None):
|
7 |
+
self.size = size
|
8 |
+
self.images = images
|
9 |
+
self.background_image = background_image
|
10 |
+
|
11 |
+
def combiner(self,images,background_image):
|
12 |
+
original = images[0]
|
13 |
+
masked = images[1]
|
14 |
+
background = cv2.resize(background_image,(images[0].shape[1],images[0].shape[0]))
|
15 |
+
result = blend_images_using_mask(original, background, masked)
|
16 |
+
return result
|
17 |
+
|
18 |
+
def mix_pixel(pix_1, pix_2, perc):
|
19 |
+
|
20 |
+
return (perc/255 * pix_1) + ((255 - perc)/255 * pix_2)
|
21 |
+
|
22 |
+
def blend_images_using_mask(img_orig, img_for_overlay, img_mask):
|
23 |
+
|
24 |
+
if len(img_mask.shape) != 3:
|
25 |
+
img_mask = cv2.cvtColor(img_mask, cv2.COLOR_GRAY2BGR)
|
26 |
+
|
27 |
+
img_res = mix_pixel(img_orig, img_for_overlay, img_mask)
|
28 |
+
|
29 |
+
return cv2.cvtColor(img_res.astype(np.uint8), cv2.COLOR_BGR2RGB)
|
img/example_1.jpg
ADDED
![]() |
img/logo.jpg
ADDED
![]() |
img/method_1.png
ADDED
![]() |
methods/__pycache__/img2pixl.cpython-38.pyc
ADDED
Binary file (2.38 kB). View file
|
|
methods/__pycache__/media.cpython-38.pyc
ADDED
Binary file (1.33 kB). View file
|
|
methods/img2pixl.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
class pixL:
|
6 |
+
#Author: Alican Akca
|
7 |
+
def __init__(self,numOfSquaresW = None, numOfSquaresH= None, size = [False, (512,512)],square = 6,ImgH = None,ImgW = None,images = [],background_image = None):
|
8 |
+
self.images = images
|
9 |
+
self.size = size
|
10 |
+
self.ImgH = ImgH
|
11 |
+
self.ImgW = ImgW
|
12 |
+
self.square = square
|
13 |
+
self.numOfSquaresW = numOfSquaresW
|
14 |
+
self.numOfSquaresH = numOfSquaresH
|
15 |
+
|
16 |
+
def preprocess(self):
|
17 |
+
for image in self.images:
|
18 |
+
|
19 |
+
size = (image.shape[0] - (image.shape[0] % 4), image.shape[1] - (image.shape[1] % 4))
|
20 |
+
image = cv2.resize(image, size)
|
21 |
+
image = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_BGR2RGB)
|
22 |
+
|
23 |
+
if len(self.images) == 1:
|
24 |
+
return self.images[0]
|
25 |
+
else:
|
26 |
+
return self.images
|
27 |
+
|
28 |
+
def toThePixL(self,images, pixel_size):
|
29 |
+
self.images = []
|
30 |
+
self.square = pixel_size
|
31 |
+
for image in images:
|
32 |
+
image = Image.fromarray(image)
|
33 |
+
image = image.convert("RGB")
|
34 |
+
self.ImgW, self.ImgH = image.size
|
35 |
+
self.images.append(pixL.epicAlgorithm(self, image))
|
36 |
+
|
37 |
+
return pixL.preprocess(self)
|
38 |
+
|
39 |
+
def numOfSquaresFunc(self):
|
40 |
+
self.numOfSquaresW = round((self.ImgW / self.square) + 1)
|
41 |
+
self.numOfSquaresH = round((self.ImgH / self.square) + 1)
|
42 |
+
|
43 |
+
def epicAlgorithm(self, image):
|
44 |
+
pixValues = []
|
45 |
+
pixL.numOfSquaresFunc(self)
|
46 |
+
|
47 |
+
for j in range(1,self.numOfSquaresH):
|
48 |
+
|
49 |
+
for i in range(1,self.numOfSquaresW):
|
50 |
+
|
51 |
+
pixValues.append((image.getpixel((
|
52 |
+
i * self.square - self.square//2,
|
53 |
+
j * self.square - self.square//2)),
|
54 |
+
(i * self.square - self.square//2,
|
55 |
+
j * self.square - self.square//2)))
|
56 |
+
|
57 |
+
background = 255 * np.ones(shape=[self.ImgH - self.square,
|
58 |
+
self.ImgW - self.square*2, 3],
|
59 |
+
dtype=np.uint8)
|
60 |
+
|
61 |
+
for pen in range(len(pixValues)):
|
62 |
+
|
63 |
+
cv2.rectangle(background,
|
64 |
+
pt1=(pixValues[pen][1][0] - self.square,pixValues[pen][1][1] - self.square),
|
65 |
+
pt2=(pixValues[pen][1][0] + self.square,pixValues[pen][1][1] + self.square),
|
66 |
+
color=(pixValues[pen][0][2],pixValues[pen][0][1],pixValues[pen][0][0]),
|
67 |
+
thickness=-1)
|
68 |
+
background = np.array(background).astype(np.uint8)
|
69 |
+
background = cv2.resize(background, (self.ImgW,self.ImgH), interpolation = cv2.INTER_AREA)
|
70 |
+
|
71 |
+
return background
|
methods/media.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import imageio
|
4 |
+
from methods.img2pixl import pixL
|
5 |
+
|
6 |
+
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", device=device, size=512)
|
9 |
+
model = torch.hub.load("bryandlee/animegan2-pytorch", "generator", device=device).eval()
|
10 |
+
|
11 |
+
class Media:
|
12 |
+
#Author: Alican Akca
|
13 |
+
def __init__(self,fname = None,pixel_size = None):
|
14 |
+
self.fname = fname
|
15 |
+
self.pixel_size = pixel_size
|
16 |
+
|
17 |
+
def split(self,fname,pixel_size, mediaType):
|
18 |
+
media = cv2.VideoCapture(fname)
|
19 |
+
frames = []
|
20 |
+
while True:
|
21 |
+
ret, cv2Image = media.read()
|
22 |
+
if not ret:
|
23 |
+
break
|
24 |
+
frames.append(cv2Image)
|
25 |
+
frames = pixL().toThePixL(frames, pixel_size)
|
26 |
+
if mediaType == 'gif':
|
27 |
+
imageio.mimsave('cache.gif', frames)
|
28 |
+
return [None, 'cache.gif', 'cache.gif']
|
29 |
+
else:
|
30 |
+
output_file = "cache.mp4"
|
31 |
+
out = cv2.VideoWriter(output_file,cv2.VideoWriter_fourcc(*'h264'), 15, (frames[0].shape[1],frames[0].shape[0]))
|
32 |
+
for i in range(len(frames)):
|
33 |
+
out.write(frames[i])
|
34 |
+
out.release()
|
35 |
+
return [output_file, None, output_file]
|
output/result_0.png
ADDED
![]() |
output/result_mask_0.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip
|
2 |
+
torch
|
3 |
+
gradio
|
4 |
+
Pillow
|
5 |
+
imageio
|
6 |
+
paddlehub
|
7 |
+
torchaudio
|
8 |
+
torchvision
|
9 |
+
paddlepaddle
|
10 |
+
opencv_python
|
src/GAN.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import keras
|
4 |
+
import warnings
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
from tensorflow.keras.optimizers import Adam
|
10 |
+
from tensorflow.keras.models import Sequential, Model
|
11 |
+
from tensorflow.keras.layers import Dense, LeakyReLU, Reshape, Flatten, Input
|
12 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Conv2DTranspose
|
13 |
+
|
14 |
+
from tensorflow.compat.v1.keras.layers import BatchNormalization
|
15 |
+
|
16 |
+
images = []
|
17 |
+
def load_images(size=(64,64)):
|
18 |
+
pixed_faces = os.listdir("kaggle/working/results/pixed_faces")
|
19 |
+
images_Path = "kaggle/working/results/pixed_faces"
|
20 |
+
for i in pixed_faces:
|
21 |
+
try:
|
22 |
+
image = cv2.imread(f"{images_Path}/{i}")
|
23 |
+
image = cv2.resize(image,size)
|
24 |
+
images.append(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
25 |
+
except:
|
26 |
+
pass
|
27 |
+
|
28 |
+
load_images()
|
29 |
+
|
30 |
+
|
31 |
+
#--------vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
|
32 |
+
#Author: https://www.kaggle.com/nassimyagoub
|
33 |
+
#--------^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
34 |
+
def __init__(self):
|
35 |
+
self.img_shape = (64, 64, 3)
|
36 |
+
|
37 |
+
self.noise_size = 100
|
38 |
+
|
39 |
+
optimizer = Adam(0.0002,0.5)
|
40 |
+
|
41 |
+
self.discriminator = self.build_discriminator()
|
42 |
+
self.discriminator.compile(loss='binary_crossentropy',
|
43 |
+
optimizer=optimizer,
|
44 |
+
metrics=['accuracy'])
|
45 |
+
|
46 |
+
self.generator = self.build_generator()
|
47 |
+
self.generator.compile(loss='binary_crossentropy', optimizer=optimizer)
|
48 |
+
|
49 |
+
self.combined = Sequential()
|
50 |
+
self.combined.add(self.generator)
|
51 |
+
self.combined.add(self.discriminator)
|
52 |
+
|
53 |
+
self.discriminator.trainable = False
|
54 |
+
|
55 |
+
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
|
56 |
+
|
57 |
+
self.combined.summary()
|
58 |
+
|
59 |
+
def build_generator(self):
|
60 |
+
epsilon = 0.00001
|
61 |
+
noise_shape = (self.noise_size,)
|
62 |
+
|
63 |
+
model = Sequential()
|
64 |
+
|
65 |
+
model.add(Dense(4*4*512, activation='linear', input_shape=noise_shape))
|
66 |
+
model.add(LeakyReLU(alpha=0.2))
|
67 |
+
model.add(Reshape((4, 4, 512)))
|
68 |
+
|
69 |
+
model.add(Conv2DTranspose(512, kernel_size=[4,4], strides=[2,2], padding="same",
|
70 |
+
kernel_initializer= keras.initializers.TruncatedNormal(stddev=0.02)))
|
71 |
+
model.add(BatchNormalization(momentum=0.9, epsilon=epsilon))
|
72 |
+
model.add(LeakyReLU(alpha=0.2))
|
73 |
+
|
74 |
+
model.add(Conv2DTranspose(256, kernel_size=[4,4], strides=[2,2], padding="same",
|
75 |
+
kernel_initializer= keras.initializers.TruncatedNormal(stddev=0.02)))
|
76 |
+
model.add(BatchNormalization(momentum=0.9, epsilon=epsilon))
|
77 |
+
model.add(LeakyReLU(alpha=0.2))
|
78 |
+
|
79 |
+
model.add(Conv2DTranspose(128, kernel_size=[4,4], strides=[2,2], padding="same",
|
80 |
+
kernel_initializer= keras.initializers.TruncatedNormal(stddev=0.02)))
|
81 |
+
model.add(BatchNormalization(momentum=0.9, epsilon=epsilon))
|
82 |
+
model.add(LeakyReLU(alpha=0.2))
|
83 |
+
|
84 |
+
model.add(Conv2DTranspose(64, kernel_size=[4,4], strides=[2,2], padding="same",
|
85 |
+
kernel_initializer= keras.initializers.TruncatedNormal(stddev=0.02)))
|
86 |
+
model.add(BatchNormalization(momentum=0.9, epsilon=epsilon))
|
87 |
+
model.add(LeakyReLU(alpha=0.2))
|
88 |
+
|
89 |
+
model.add(Conv2DTranspose(3, kernel_size=[4,4], strides=[1,1], padding="same",
|
90 |
+
kernel_initializer= keras.initializers.TruncatedNormal(stddev=0.02)))
|
91 |
+
|
92 |
+
model.add(Activation("tanh"))
|
93 |
+
|
94 |
+
model.summary()
|
95 |
+
|
96 |
+
noise = Input(shape=noise_shape)
|
97 |
+
img = model(noise)
|
98 |
+
|
99 |
+
return Model(noise, img)
|
100 |
+
|
101 |
+
def build_discriminator(self):
|
102 |
+
|
103 |
+
model = Sequential()
|
104 |
+
|
105 |
+
model.add(Conv2D(128, (3,3), padding='same', input_shape=self.img_shape))
|
106 |
+
model.add(LeakyReLU(alpha=0.2))
|
107 |
+
model.add(BatchNormalization())
|
108 |
+
model.add(Conv2D(128, (3,3), padding='same'))
|
109 |
+
model.add(LeakyReLU(alpha=0.2))
|
110 |
+
model.add(BatchNormalization())
|
111 |
+
model.add(MaxPooling2D(pool_size=(3,3)))
|
112 |
+
model.add(Dropout(0.2))
|
113 |
+
|
114 |
+
model.add(Conv2D(128, (3,3), padding='same'))
|
115 |
+
model.add(LeakyReLU(alpha=0.2))
|
116 |
+
model.add(BatchNormalization())
|
117 |
+
model.add(Conv2D(128, (3,3), padding='same'))
|
118 |
+
model.add(LeakyReLU(alpha=0.2))
|
119 |
+
model.add(BatchNormalization())
|
120 |
+
model.add(MaxPooling2D(pool_size=(3,3)))
|
121 |
+
model.add(Dropout(0.3))
|
122 |
+
|
123 |
+
model.add(Flatten())
|
124 |
+
model.add(Dense(128))
|
125 |
+
model.add(LeakyReLU(alpha=0.2))
|
126 |
+
model.add(Dense(128))
|
127 |
+
model.add(LeakyReLU(alpha=0.2))
|
128 |
+
model.add(Dense(1, activation='sigmoid'))
|
129 |
+
|
130 |
+
model.summary()
|
131 |
+
|
132 |
+
img = Input(shape=self.img_shape)
|
133 |
+
validity = model(img)
|
134 |
+
|
135 |
+
return Model(img, validity)
|
136 |
+
|
137 |
+
def train(self, epochs, batch_size=128, metrics_update=50, save_images=100, save_model=2000):
|
138 |
+
|
139 |
+
X_train = np.array(images)
|
140 |
+
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
|
141 |
+
|
142 |
+
half_batch = int(batch_size / 2)
|
143 |
+
|
144 |
+
mean_d_loss=[0,0]
|
145 |
+
mean_g_loss=0
|
146 |
+
|
147 |
+
for epoch in range(epochs):
|
148 |
+
idx = np.random.randint(0, X_train.shape[0], half_batch)
|
149 |
+
imgs = X_train[idx]
|
150 |
+
|
151 |
+
noise = np.random.normal(0, 1, (half_batch, self.noise_size))
|
152 |
+
gen_imgs = self.generator.predict(noise)
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
d_loss = 0.5 * np.add(self.discriminator.train_on_batch(imgs, np.ones((half_batch, 1))),
|
158 |
+
self.discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1))))
|
159 |
+
|
160 |
+
|
161 |
+
noise = np.random.normal(0, 1, (batch_size, self.noise_size))
|
162 |
+
|
163 |
+
valid_y = np.array([1] * batch_size)
|
164 |
+
g_loss = self.combined.train_on_batch(noise, valid_y)
|
165 |
+
|
166 |
+
mean_d_loss[0] += d_loss[0]
|
167 |
+
mean_d_loss[1] += d_loss[1]
|
168 |
+
mean_g_loss += g_loss
|
169 |
+
|
170 |
+
|
171 |
+
if epoch % metrics_update == 0:
|
172 |
+
print ("%d [Discriminator loss: %f, acc.: %.2f%%] [Generator loss: %f]" % (epoch, mean_d_loss[0]/metrics_update, 100*mean_d_loss[1]/metrics_update, mean_g_loss/metrics_update))
|
173 |
+
mean_d_loss=[0,0]
|
174 |
+
mean_g_loss=0
|
175 |
+
|
176 |
+
if epoch % save_images == 0:
|
177 |
+
self.save_images(epoch)
|
178 |
+
|
179 |
+
|
180 |
+
if epoch % save_model == 0:
|
181 |
+
self.generator.save("kaggle/working/results/generators/generator_%d" % epoch)
|
182 |
+
self.discriminator.save("kaggle/working/results/discriminators/discriminator_%d" % epoch)
|
183 |
+
|
184 |
+
|
185 |
+
def save_images(self, epoch):
|
186 |
+
noise = np.random.normal(0, 1, (25, self.noise_size))
|
187 |
+
gen_imgs = self.generator.predict(noise)
|
188 |
+
|
189 |
+
|
190 |
+
gen_imgs = 0.5 * gen_imgs + 0.5
|
191 |
+
|
192 |
+
fig, axs = plt.subplots(5,5, figsize = (8,8))
|
193 |
+
|
194 |
+
for i in range(5):
|
195 |
+
for j in range(5):
|
196 |
+
axs[i,j].imshow(gen_imgs[5*i+j])
|
197 |
+
axs[i,j].axis('off')
|
198 |
+
|
199 |
+
plt.show()
|
200 |
+
|
201 |
+
fig.savefig("kaggle/working/results/pandaS_%d.png" % epoch)
|
202 |
+
plt.close()
|