File size: 21,410 Bytes
17d73b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import numpy as np
import math
import types
import torch
import torch.nn as nn
import numpy as np
import cv2
import re
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange
from PIL import Image

def extract_first_sentence(text):
    end_index = text.find('.')
    if end_index != -1:
        first_sentence = text[:end_index + 1]
        return first_sentence.strip()
    else:
        return text.strip()
    
import re
def remove_duplicate_keywords(text, keywords): ### This function can continue to be optimized
    keyword_counts = {}

    words = re.findall(r'\b\w+\b|[.,;!?]', text)

    for keyword in keywords:
        keyword_counts[keyword] = 0
        for i, word in enumerate(words):
            if word.lower() == keyword.lower():
                keyword_counts[keyword] += 1
                if keyword_counts[keyword] > 1:
                    words[i] = ""
    processed_text = " ".join(words)

    return processed_text

def process_text_with_markers(text, parsing_mask_list):
    keywords = ["face", "ears", "eyes", "nose", "mouth"]
    text = remove_duplicate_keywords(text, keywords)
    key_parsing_mask_markers = ["Face", "Left_Ear", "Right_Ear", "Left_Eye", "Right_Eye", "Nose", "Upper_Lip", "Lower_Lip"]
    mapping = {
        "Face": "face",
        "Left_Ear": "ears",
        "Right_Ear": "ears",
        "Left_Eye": "eyes",
        "Right_Eye": "eyes",
        "Nose": "nose",
        "Upper_Lip": "mouth",
        "Lower_Lip": "mouth",
    }
    facial_features_align = []
    markers_align = []
    for key in key_parsing_mask_markers:
        if key in parsing_mask_list:
            mapped_key = mapping.get(key, key.lower())
            if mapped_key not in facial_features_align:
                facial_features_align.append(mapped_key)
                markers_align.append("<|"+mapped_key+"|>")

    text_marked = text
    align_parsing_mask_list = parsing_mask_list
    for feature, marker in zip(facial_features_align[::-1], markers_align[::-1]):
        pattern = rf'\b{feature}\b'  
        text_marked_new = re.sub(pattern, f'{feature} {marker}', text_marked, count=1)
        if text_marked == text_marked_new:
            for key, value in mapping.items():
                if value == feature:
                    if key in align_parsing_mask_list:
                        del align_parsing_mask_list[key]   

        text_marked = text_marked_new 

    text_marked = text_marked.replace('\n', '')

    ordered_text = []
    text_none_makers = []
    facial_marked_count = 0
    skip_count = 0
    for marker in markers_align:
        start_idx = text_marked.find(marker)
        end_idx = start_idx + len(marker)

        while start_idx > 0 and text_marked[start_idx - 1] not in [",", ".", ";"]:
            start_idx -= 1

        while end_idx < len(text_marked) and text_marked[end_idx] not in [",", ".", ";"]:
            end_idx += 1

        context = text_marked[start_idx:end_idx].strip()
        if context == "":
            text_none_makers.append(text_marked[:end_idx])
        else:
            if skip_count!=0:
                skip_count -= 1 
                continue
            else:
                ordered_text.append(context + ",") 
                text_delete_makers = text_marked[:start_idx] + text_marked[end_idx:]
                text_marked = text_delete_makers
                facial_marked_count += 1

    align_marked_text = " ".join(ordered_text)
    replace_list = ["<|face|>", "<|ears|>", "<|nose|>", "<|eyes|>", "<|mouth|>"] 
    for item in replace_list:
        align_marked_text = align_marked_text.replace(item, "<|facial|>")

    return align_marked_text, align_parsing_mask_list

def tokenize_and_mask_noun_phrases_ends(text, image_token_id, facial_token_id, tokenizer):
    input_ids = tokenizer.encode(text)
    image_noun_phrase_end_mask = [False for _ in input_ids] 
    facial_noun_phrase_end_mask = [False for _ in input_ids]
    clean_input_ids = []
    clean_index = 0
    image_num = 0

    for i, id in enumerate(input_ids):
        if id == image_token_id:
            image_noun_phrase_end_mask[clean_index + image_num - 1] = True
            image_num += 1
        elif id == facial_token_id:
            facial_noun_phrase_end_mask[clean_index - 1] = True   
        else:
            clean_input_ids.append(id)
            clean_index += 1

    max_len = tokenizer.model_max_length 

    if len(clean_input_ids) > max_len:
        clean_input_ids = clean_input_ids[:max_len]
    else:
        clean_input_ids = clean_input_ids + [tokenizer.pad_token_id] * (
            max_len - len(clean_input_ids)
        )

    if len(image_noun_phrase_end_mask) > max_len: 
        image_noun_phrase_end_mask = image_noun_phrase_end_mask[:max_len]
    else:
        image_noun_phrase_end_mask = image_noun_phrase_end_mask + [False] * (
            max_len - len(image_noun_phrase_end_mask)
        )

    if len(facial_noun_phrase_end_mask) > max_len: 
        facial_noun_phrase_end_mask = facial_noun_phrase_end_mask[:max_len]
    else:
        facial_noun_phrase_end_mask = facial_noun_phrase_end_mask + [False] * (
            max_len - len(facial_noun_phrase_end_mask)
        )        

    clean_input_ids = torch.tensor(clean_input_ids, dtype=torch.long)
    image_noun_phrase_end_mask = torch.tensor(image_noun_phrase_end_mask, dtype=torch.bool)
    facial_noun_phrase_end_mask = torch.tensor(facial_noun_phrase_end_mask, dtype=torch.bool)
    
    return clean_input_ids.unsqueeze(0), image_noun_phrase_end_mask.unsqueeze(0), facial_noun_phrase_end_mask.unsqueeze(0)

def prepare_image_token_idx(image_token_mask, facial_token_mask, max_num_objects=2, max_num_facials=5):
    image_token_idx = torch.nonzero(image_token_mask, as_tuple=True)[1]
    image_token_idx_mask = torch.ones_like(image_token_idx, dtype=torch.bool)
    if len(image_token_idx) < max_num_objects:
        image_token_idx = torch.cat(
            [ 
                image_token_idx,
                torch.zeros(max_num_objects - len(image_token_idx), dtype=torch.long),
            ]
        )
        image_token_idx_mask = torch.cat(
            [ 
                image_token_idx_mask,
                torch.zeros(
                    max_num_objects - len(image_token_idx_mask),
                    dtype=torch.bool,
                ),
            ]
        )

    facial_token_idx = torch.nonzero(facial_token_mask, as_tuple=True)[1]
    facial_token_idx_mask = torch.ones_like(facial_token_idx, dtype=torch.bool)     
    if len(facial_token_idx) < max_num_facials:
        facial_token_idx = torch.cat(
            [ 
                facial_token_idx,
                torch.zeros(max_num_facials - len(facial_token_idx), dtype=torch.long),
            ]
        )
        facial_token_idx_mask = torch.cat(
            [ 
                facial_token_idx_mask,
                torch.zeros(
                    max_num_facials - len(facial_token_idx_mask),
                    dtype=torch.bool,
                ),
            ]
        )

    image_token_idx = image_token_idx.unsqueeze(0)
    image_token_idx_mask = image_token_idx_mask.unsqueeze(0)
    
    facial_token_idx = facial_token_idx.unsqueeze(0)
    facial_token_idx_mask = facial_token_idx_mask.unsqueeze(0)

    return image_token_idx, image_token_idx_mask, facial_token_idx, facial_token_idx_mask

def get_object_localization_loss_for_one_layer(
    cross_attention_scores,
    object_segmaps,
    object_token_idx,
    object_token_idx_mask,
    loss_fn,
):
    bxh, num_noise_latents, num_text_tokens = cross_attention_scores.shape
    b, max_num_objects, _, _ = object_segmaps.shape
    size = int(num_noise_latents**0.5)

    object_segmaps = F.interpolate(object_segmaps, size=(size, size), mode="bilinear", antialias=True)

    object_segmaps = object_segmaps.view(
        b, max_num_objects, -1
    )

    num_heads = bxh // b
    cross_attention_scores = cross_attention_scores.view(b, num_heads, num_noise_latents, num_text_tokens)

    
    object_token_attn_prob = torch.gather(
        cross_attention_scores,
        dim=3,
        index=object_token_idx.view(b, 1, 1, max_num_objects).expand(
            b, num_heads, num_noise_latents, max_num_objects
        ),
    )
    object_segmaps = (
        object_segmaps.permute(0, 2, 1)
        .unsqueeze(1)
        .expand(b, num_heads, num_noise_latents, max_num_objects)
    )
    loss = loss_fn(object_token_attn_prob, object_segmaps)

    loss = loss * object_token_idx_mask.view(b, 1, max_num_objects)
    object_token_cnt = object_token_idx_mask.sum(dim=1).view(b, 1) + 1e-5
    loss = (loss.sum(dim=2) / object_token_cnt).mean()

    return loss


def get_object_localization_loss(
    cross_attention_scores,
    object_segmaps,
    image_token_idx,
    image_token_idx_mask,
    loss_fn,
):  
    num_layers = len(cross_attention_scores)
    loss = 0
    for k, v in cross_attention_scores.items():
        layer_loss = get_object_localization_loss_for_one_layer(
            v, object_segmaps, image_token_idx, image_token_idx_mask, loss_fn
        )
        loss += layer_loss
    return loss / num_layers

def unet_store_cross_attention_scores(unet, attention_scores, layers=5):
    from diffusers.models.attention_processor import Attention

    UNET_LAYER_NAMES = [ 
        "down_blocks.0",
        "down_blocks.1",
        "down_blocks.2",
        "mid_block",
        "up_blocks.1",
        "up_blocks.2",
        "up_blocks.3",
    ]

    start_layer = (len(UNET_LAYER_NAMES) - layers) // 2
    end_layer = start_layer + layers   
    applicable_layers = UNET_LAYER_NAMES[start_layer:end_layer]

    def make_new_get_attention_scores_fn(name):
        def new_get_attention_scores(module, query, key, attention_mask=None):
            attention_probs = module.old_get_attention_scores(
                query, key, attention_mask
            )
            attention_scores[name] = attention_probs
            return attention_probs

        return new_get_attention_scores 

    for name, module in unet.named_modules():
        if isinstance(module, Attention) and "attn1" in name:
            if not any(layer in name for layer in applicable_layers):
                continue
 
            module.old_get_attention_scores = module.get_attention_scores
            module.get_attention_scores = types.MethodType(
                make_new_get_attention_scores_fn(name), module
            )
    return unet
    
class BalancedL1Loss(nn.Module):
    def __init__(self, threshold=1.0, normalize=False):
        super().__init__()
        self.threshold = threshold
        self.normalize = normalize

    def forward(self, object_token_attn_prob, object_segmaps):
        if self.normalize:
            object_token_attn_prob = object_token_attn_prob / (
                object_token_attn_prob.max(dim=2, keepdim=True)[0] + 1e-5
            )
        background_segmaps = 1 - object_segmaps
        background_segmaps_sum = background_segmaps.sum(dim=2) + 1e-5
        object_segmaps_sum = object_segmaps.sum(dim=2) + 1e-5

        background_loss = (object_token_attn_prob * background_segmaps).sum(
            dim=2
        ) / background_segmaps_sum

        object_loss = (object_token_attn_prob * object_segmaps).sum(
            dim=2
        ) / object_segmaps_sum

        return background_loss - object_loss

def fetch_mask_raw_image(raw_image, mask_image):

    mask_image = mask_image.resize(raw_image.size)
    mask_raw_image = Image.composite(raw_image, Image.new('RGB', raw_image.size, (0, 0, 0)), mask_image) 

    return mask_raw_image

mapping_table = [
    {"Mask Value": 0, "Body Part": "Background", "RGB Color": [0, 0, 0]},
    {"Mask Value": 1, "Body Part": "Face", "RGB Color": [255, 0, 0]},
    {"Mask Value": 2, "Body Part": "Left_Eyebrow", "RGB Color": [255, 85, 0]},
    {"Mask Value": 3, "Body Part": "Right_Eyebrow", "RGB Color": [255, 170, 0]},
    {"Mask Value": 4, "Body Part": "Left_Eye", "RGB Color": [255, 0, 85]},
    {"Mask Value": 5, "Body Part": "Right_Eye", "RGB Color": [255, 0, 170]},
    {"Mask Value": 6, "Body Part": "Hair", "RGB Color": [0, 0, 255]},
    {"Mask Value": 7, "Body Part": "Left_Ear", "RGB Color": [85, 0, 255]},
    {"Mask Value": 8, "Body Part": "Right_Ear", "RGB Color": [170, 0, 255]},
    {"Mask Value": 9, "Body Part": "Mouth_External Contour", "RGB Color": [0, 255, 85]},
    {"Mask Value": 10, "Body Part": "Nose", "RGB Color": [0, 255, 0]},
    {"Mask Value": 11, "Body Part": "Mouth_Inner_Contour", "RGB Color": [0, 255, 170]},
    {"Mask Value": 12, "Body Part": "Upper_Lip", "RGB Color": [85, 255, 0]}, 
    {"Mask Value": 13, "Body Part": "Lower_Lip", "RGB Color": [170, 255, 0]},
    {"Mask Value": 14, "Body Part": "Neck", "RGB Color": [0, 85, 255]},
    {"Mask Value": 15, "Body Part": "Neck_Inner Contour", "RGB Color": [0, 170, 255]},
    {"Mask Value": 16, "Body Part": "Cloth", "RGB Color": [255, 255, 0]},
    {"Mask Value": 17, "Body Part": "Hat", "RGB Color": [255, 0, 255]},
    {"Mask Value": 18, "Body Part": "Earring", "RGB Color": [255, 85, 255]},
    {"Mask Value": 19, "Body Part": "Necklace", "RGB Color": [255, 255, 85]},
    {"Mask Value": 20, "Body Part": "Glasses", "RGB Color": [255, 170, 255]},
    {"Mask Value": 21, "Body Part": "Hand", "RGB Color": [255, 0, 255]},
    {"Mask Value": 22, "Body Part": "Wristband", "RGB Color": [0, 255, 255]},
    {"Mask Value": 23, "Body Part": "Clothes_Upper", "RGB Color": [85, 255, 255]},
    {"Mask Value": 24, "Body Part": "Clothes_Lower", "RGB Color": [170, 255, 255]}
]

def masks_for_unique_values(image_raw_mask):

    image_array = np.array(image_raw_mask)
    unique_values, counts = np.unique(image_array, return_counts=True)
    masks_dict = {}
    for value in unique_values:
        binary_image = np.uint8(image_array == value) * 255
    
        contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        mask = np.zeros_like(image_array)

        for contour in contours:
            cv2.drawContours(mask, [contour], -1, (255), thickness=cv2.FILLED)
        
        if value == 0:
            body_part="WithoutBackground"
            mask2 = np.where(mask == 255, 0, 255).astype(mask.dtype)
            masks_dict[body_part] = Image.fromarray(mask2)
            
        body_part = next((entry["Body Part"] for entry in mapping_table if entry["Mask Value"] == value), f"Unknown_{value}")
        if body_part.startswith("Unknown_"):
            continue            

        masks_dict[body_part] = Image.fromarray(mask)
    
    return masks_dict

# FFN
def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )


def reshape_tensor(x, heads):
    bs, length, width = x.shape
    x = x.view(bs, length, heads, -1)
    x = x.transpose(1, 2)
    x = x.reshape(bs, heads, length, -1)
    return x

class PerceiverAttention(nn.Module):
    def __init__(self, *, dim, dim_head=64, heads=8):
        super().__init__()
        self.scale = dim_head**-0.5
        self.dim_head = dim_head
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

    def forward(self, x, latents):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, n1, D)
            latent (torch.Tensor): latent features
                shape (b, n2, D)
        """

        x = self.norm1(x)
        latents = self.norm2(latents)

        b, l, _ = latents.shape

        q = self.to_q(latents)
        kv_input = torch.cat((x, latents), dim=-2)
        k, v = self.to_kv(kv_input).chunk(2, dim=-1)

        q = reshape_tensor(q, self.heads)
        k = reshape_tensor(k, self.heads)
        v = reshape_tensor(v, self.heads)

        # attention
        scale = 1 / math.sqrt(math.sqrt(self.dim_head))
        weight = (q * scale) @ (k * scale).transpose(-2, -1)
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        out = weight @ v

        out = out.permute(0, 2, 1, 3).reshape(b, l, -1)

        return self.to_out(out)

class FacePerceiverResampler(torch.nn.Module):
    def __init__(
        self,
        *,
        dim=768,
        depth=4,
        dim_head=64,
        heads=16,
        embedding_dim=1280,
        output_dim=768,
        ff_mult=4,
    ):
        super().__init__()
        
        self.proj_in = torch.nn.Linear(embedding_dim, dim)
        self.proj_out = torch.nn.Linear(dim, output_dim)
        self.norm_out = torch.nn.LayerNorm(output_dim)
        self.layers = torch.nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                torch.nn.ModuleList(
                    [
                        PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
                        FeedForward(dim=dim, mult=ff_mult),
                    ]
                )
            )

    def forward(self, latents, x):
        x = self.proj_in(x)
        for attn, ff in self.layers:
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents
        latents = self.proj_out(latents)
        return self.norm_out(latents)
  
class ProjPlusModel(torch.nn.Module):
    def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4):
        super().__init__()
        
        self.cross_attention_dim = cross_attention_dim
        self.num_tokens = num_tokens
        
        self.proj = torch.nn.Sequential(
            torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
            torch.nn.GELU(),
            torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
        )
        self.norm = torch.nn.LayerNorm(cross_attention_dim)
        
        self.perceiver_resampler = FacePerceiverResampler(
            dim=cross_attention_dim,
            depth=4,
            dim_head=64,
            heads=cross_attention_dim // 64,
            embedding_dim=clip_embeddings_dim,
            output_dim=cross_attention_dim,
            ff_mult=4,
        )
        
    def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0):

        x = self.proj(id_embeds)
        x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
        x = self.norm(x) 
        out = self.perceiver_resampler(x, clip_embeds)
        if shortcut:
            out = x + scale * out
        return out
    
class AttentionMLP(nn.Module):
    def __init__(
        self,
        dtype=torch.float16,
        dim=1024,
        depth=8,
        dim_head=64,
        heads=16,
        single_num_tokens=1,
        embedding_dim=1280,
        output_dim=768,
        ff_mult=4,
        max_seq_len: int = 257*2,
        apply_pos_emb: bool = False,
        num_latents_mean_pooled: int = 0,
    ):
        super().__init__()
        self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None

        self.single_num_tokens = single_num_tokens
        self.latents = nn.Parameter(torch.randn(1, self.single_num_tokens, dim) / dim**0.5)

        self.proj_in = nn.Linear(embedding_dim, dim)

        self.proj_out = nn.Linear(dim, output_dim)
        self.norm_out = nn.LayerNorm(output_dim)

        self.to_latents_from_mean_pooled_seq = (
            nn.Sequential(
                nn.LayerNorm(dim),
                nn.Linear(dim, dim * num_latents_mean_pooled),
                Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
            )
            if num_latents_mean_pooled > 0
            else None
        )

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList(
                    [
                        PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
                        FeedForward(dim=dim, mult=ff_mult),
                    ]
                )
            )

    def forward(self, x):
        if self.pos_emb is not None:
            n, device = x.shape[1], x.device
            pos_emb = self.pos_emb(torch.arange(n, device=device))
            x = x + pos_emb

        latents = self.latents.repeat(x.size(0), 1, 1)

        x = self.proj_in(x)

        if self.to_latents_from_mean_pooled_seq:
            meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
            meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
            latents = torch.cat((meanpooled_latents, latents), dim=-2)

        for attn, ff in self.layers:
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents

        latents = self.proj_out(latents)
        return self.norm_out(latents)


def masked_mean(t, *, dim, mask=None):
    if mask is None:
        return t.mean(dim=dim)

    denom = mask.sum(dim=dim, keepdim=True)
    mask = rearrange(mask, "b n -> b n 1")
    masked_t = t.masked_fill(~mask, 0.0)

    return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)