Spaces:
Sleeping
Sleeping
File size: 6,522 Bytes
c8672f7 487ed33 7f74ea0 487ed33 f4c725a 8488f1e 487ed33 f4c725a 487ed33 f4c725a 487ed33 f4c725a 487ed33 f4c725a 487ed33 f4c725a 7f74ea0 487ed33 7f74ea0 f4c725a 487ed33 f4c725a 487ed33 f4c725a 487ed33 f4c725a 487ed33 5f56a57 487ed33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import spaces
from typing import Optional
import logging
import time
import threading
import torch
import librosa
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM, Pipeline
from accelerate import Accelerator
# Set up logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
try:
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
logger.info("Flash Attention installed successfully.")
USE_FA = True
except:
USE_FA = False
logger.warning("Flash Attention not available. Using standard attention instead.")
# Model constants
MODEL_ID = "JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW"
PHI_MODEL_ID = "JacobLinCool/Phi-4-multimodal-instruct-commonvoice-zh-tw"
# Model instances (initialized lazily)
pipe: Optional[Pipeline] = None
phi_model = None
phi_processor = None
# Lock for thread-safe model loading
model_loading_lock = threading.Lock()
def load_model() -> None:
"""
Load the Whisper model for transcription.
Uses GPU if available.
"""
global pipe
if pipe is not None:
return # Model already loaded
try:
start_time = time.time()
logger.info(f"Loading Whisper model {MODEL_ID}...")
device = Accelerator().device
pipe = pipeline("automatic-speech-recognition", model=MODEL_ID, device=device)
logger.info(
f"Model loaded successfully in {time.time() - start_time:.2f} seconds"
)
except Exception as e:
logger.error(f"Failed to load Whisper model: {str(e)}")
raise
def get_gpu_duration(audio: str) -> int:
"""
Calculate required GPU allocation time based on audio duration.
Args:
audio: Path to audio file
Returns:
GPU allocation time in seconds
"""
try:
y, sr = librosa.load(audio)
duration = librosa.get_duration(y=y, sr=sr) / 60.0
gpu_duration = max(1.0, (duration + 59.0) // 60.0) * 60.0
logger.info(
f"Audio duration: {duration:.2f} min, Allocated GPU time: {gpu_duration:.2f} min"
)
return int(gpu_duration)
except Exception as e:
logger.error(f"Failed to calculate GPU duration: {str(e)}")
return 60 # Default to 1 minute if calculation fails
@spaces.GPU(duration=get_gpu_duration)
def transcribe_audio_local(audio: str) -> str:
"""
Transcribe audio using the Whisper model.
Args:
audio: Path to audio file
Returns:
Transcribed text
"""
try:
logger.info(f"Transcribing audio with Whisper: {audio}")
if pipe is None:
load_model()
out = pipe(audio, return_timestamps=True)
return out.get("text", "No transcription generated")
except Exception as e:
logger.error(f"Whisper transcription error: {str(e)}")
raise
def load_phi_model() -> None:
"""
Load the Phi-4 model and processor.
Uses GPU with Flash Attention if available.
"""
global phi_model, phi_processor
if phi_model is not None and phi_processor is not None:
return # Model already loaded
try:
start_time = time.time()
logger.info(f"Loading Phi-4 model {PHI_MODEL_ID}...")
phi_processor = AutoProcessor.from_pretrained(
PHI_MODEL_ID, trust_remote_code=True
)
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if USE_FA else torch.float32
attn_implementation = "flash_attention_2" if USE_FA else "sdpa"
phi_model = AutoModelForCausalLM.from_pretrained(
PHI_MODEL_ID,
torch_dtype=dtype,
_attn_implementation=attn_implementation,
trust_remote_code=True,
).to(device)
logger.info(
f"Phi-4 model loaded successfully in {time.time() - start_time:.2f} seconds"
)
except Exception as e:
logger.error(f"Failed to load Phi-4 model: {str(e)}")
raise
@spaces.GPU(duration=get_gpu_duration)
def transcribe_audio_phi(audio: str) -> str:
"""
Transcribe audio using the Phi-4 model.
Args:
audio: Path to audio file
Returns:
Transcribed text
"""
try:
logger.info(f"Transcribing audio with Phi-4: {audio}")
load_phi_model()
# Load and resample audio to 16kHz
y, sr = librosa.load(audio, sr=16000)
# Prepare the user message and generate the prompt
user_message = {
"role": "user",
"content": "<|audio_1|> Transcribe the audio clip into text.",
}
prompt = phi_processor.tokenizer.apply_chat_template(
[user_message], tokenize=False, add_generation_prompt=True
)
# Build inputs for the model
inputs = phi_processor(text=prompt, audios=[(y, sr)], return_tensors="pt")
inputs = {
k: v.to(phi_model.device) if hasattr(v, "to") else v
for k, v in inputs.items()
}
# Generate transcription without gradients
with torch.no_grad():
generated_ids = phi_model.generate(
**inputs,
eos_token_id=phi_processor.tokenizer.eos_token_id,
max_new_tokens=256, # Increased for longer transcriptions
do_sample=False,
)
# Decode the generated token IDs into text
transcription = phi_processor.decode(
generated_ids[0, inputs["input_ids"].shape[1] :],
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
logger.info(f"Phi-4 transcription completed successfully")
return transcription
except Exception as e:
logger.error(f"Phi-4 transcription error: {str(e)}")
raise
def preload_models() -> None:
"""
Preload models into memory to reduce cold start time.
This function can be called at application startup.
"""
try:
logger.info("Preloading models to reduce cold start time")
# Load Whisper model first as it's the default
load_model()
# Then load Phi model
load_phi_model()
logger.info("All models preloaded successfully")
except Exception as e:
logger.error(f"Error during model preloading: {str(e)}")
|