Spaces:
Paused
Paused
File size: 5,514 Bytes
38548f2 83ea110 b4b3999 38548f2 83ea110 38548f2 83ea110 38548f2 6db8e8a 38548f2 83ea110 38548f2 83ea110 38548f2 b4b3999 1d37aeb b4b3999 83ea110 38548f2 83ea110 38548f2 b4b3999 83ea110 38548f2 83ea110 38548f2 b4b3999 83ea110 38548f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
from glob import glob
import os
import shutil
import gradio as gr
from infer.lib.train.process_ckpt import extract_small_model
from app.train import train_index
from huggingface_hub import upload_folder
def download_weight(exp_dir: str) -> str:
checkpoints = glob(f"{exp_dir}/G_*.pth")
if not checkpoints:
raise gr.Error("No checkpoint found")
latest_checkpoint = max(checkpoints, key=os.path.getctime)
print(f"Latest checkpoint: {latest_checkpoint}")
out = os.path.join(exp_dir, f"model.pth")
extract_small_model(
latest_checkpoint, out, "40k", True, "Model trained by ZeroGPU.", "v2"
)
return out
def download_inference_pack(exp_dir: str) -> str:
net_g = download_weight(exp_dir)
index = glob(f"{exp_dir}/added_*.index")
if not index:
train_index(exp_dir)
index = glob(f"{exp_dir}/added_*.index")
if not index:
raise gr.Error("Index not found")
# make zip of those two files
tmp = os.path.join(exp_dir, "inference_pack")
if os.path.exists(tmp):
shutil.rmtree(tmp)
os.makedirs(tmp)
shutil.copy(net_g, tmp)
shutil.copy(index[0], tmp)
shutil.make_archive(tmp, "zip", tmp)
shutil.rmtree(tmp)
return f"{tmp}.zip"
def download_expdir(exp_dir: str) -> str:
shutil.make_archive(exp_dir, "zip", exp_dir)
return f"{exp_dir}.zip"
def upload_to_huggingface(exp_dir: str, repo_id: str, token: str) -> str:
commit = upload_folder(
repo_id=repo_id,
folder_path=exp_dir,
ignore_patterns=["_data", "*.zip", "tmp.wav"],
token=token if token.startswith("hf_") else None,
)
return commit.commit_url
def remove_legacy_checkpoints(exp_dir: str):
checkpoints = glob(f"{exp_dir}/G_*.pth")
if not checkpoints:
raise gr.Error("No checkpoint found")
latest_checkpoint = max(checkpoints, key=os.path.getctime)
print(f"Latest checkpoint: {latest_checkpoint}")
for checkpoint in checkpoints:
if checkpoint != latest_checkpoint:
os.remove(checkpoint)
print(f"Removed: {checkpoint}")
checkpoints = glob(f"{exp_dir}/D_*.pth")
if not checkpoints:
raise gr.Error("No checkpoint found")
latest_checkpoint = max(checkpoints, key=os.path.getctime)
print(f"Latest checkpoint: {latest_checkpoint}")
for checkpoint in checkpoints:
if checkpoint != latest_checkpoint:
os.remove(checkpoint)
print(f"Removed: {checkpoint}")
def remove_expdir(exp_dir: str) -> str:
shutil.rmtree(exp_dir)
return ""
class ExportTab:
def __init__(self):
pass
def ui(self):
gr.Markdown("# Download Model or Experiment Directory")
gr.Markdown(
"You can download the latest model or the entire experiment directory here."
)
with gr.Row():
self.download_weight_btn = gr.Button(
value="Latest model (for inferencing)", variant="primary"
)
self.download_weight_output = gr.File(label="Prune latest model")
with gr.Row():
self.download_inference_pack_btn = gr.Button(
value="Download inference pack (model + index)", variant="primary"
)
self.download_inference_pack_output = gr.File(label="Inference pack")
with gr.Row():
self.download_expdir_btn = gr.Button(
value="Download experiment directory", variant="primary"
)
self.download_expdir_output = gr.File(label="Archive experiment directory")
with gr.Row():
with gr.Column():
gr.Markdown("### Upload to Hugging Face")
gr.Markdown(
"You can upload the entire experiment directory to Hugging Face."
)
self.commit_link = gr.Markdown("")
with gr.Column():
self.repo_id = gr.Textbox(label="Repository ID")
self.token = gr.Textbox(label="Personal access token")
self.upload_to_huggingface_btn = gr.Button(
value="Upload to Hugging Face", variant="primary"
)
with gr.Row():
self.remove_legacy_checkpoints_btn = gr.Button(
value="Remove legacy checkpoints"
)
with gr.Row():
self.remove_expdir_btn = gr.Button(
value="REMOVE experiment directory", variant="stop"
)
def build(self, exp_dir: gr.Textbox):
self.download_weight_btn.click(
fn=download_weight,
inputs=[exp_dir],
outputs=[self.download_weight_output],
)
self.download_inference_pack_btn.click(
fn=download_inference_pack,
inputs=[exp_dir],
outputs=[self.download_inference_pack_output],
)
self.download_expdir_btn.click(
fn=download_expdir,
inputs=[exp_dir],
outputs=[self.download_expdir_output],
)
self.upload_to_huggingface_btn.click(
fn=upload_to_huggingface,
inputs=[exp_dir, self.repo_id, self.token],
outputs=[self.commit_link],
)
self.remove_legacy_checkpoints_btn.click(
fn=remove_legacy_checkpoints,
inputs=[exp_dir],
)
self.remove_expdir_btn.click(
fn=remove_expdir,
inputs=[exp_dir],
outputs=[exp_dir],
)
|